ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-86-04-53-58

Ethanol concentration sensor based on TiO2-ZnO composite film enhanced surface plasmon resonance with molybdenum disulfide — graphene oxide hybrid nano-sheet

For Russian citation (Opticheskii Zhurnal):

X. Wu, Zh. Li, K. Tong, X. Jia, W. Li Ethanol concentration sensor based on TiO2-ZnO composite film enhanced surface plasmon resonance with molybdenum disulfide — graphene oxide hybrid nano-sheet (Датчик концентрации этанола на основе поверхностного плазмонного резонанса, усиленного использованием композитных плёнок TiO2-ZnO c гибридными нанолистами MоS2-графена) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 4. С. 53–58. http://doi.org/10.17586/1023-5086-2019-86-04-53-58

X. Wu, Zh. Li, K. Tong, X. Jia, W. Li Ethanol concentration sensor based on TiO2-ZnO composite film enhanced surface plasmon resonance with molybdenum disulfide — graphene oxide hybrid nano-sheet (Датчик концентрации этанола на основе поверхностного плазмонного резонанса, усиленного использованием композитных плёнок TiO2-ZnO c гибридными нанолистами MоS2-графена) [in English] // Opticheskii Zhurnal. 2019. V. 86. № 4. P. 53–58. http://doi.org/10.17586/1023-5086-2019-86-04-53-58

For citation (Journal of Optical Technology):

Xiaogang Wu, Zhiquan Li, Kai Tong, Xiaopeng Jia, and Wenchao Li, "Ethanol concentration sensor based on TiO2-ZnO composite film enhanced surface plasmon resonance with a molybdenum disulfide-graphene oxide hybrid nano-sheet," Journal of Optical Technology. 86(4), 238-242 (2019). https://doi.org/10.1364/JOT.86.000238

Abstract:

A method of ethanol concentration detection based on surface plasmon resonance is proposed. Therefore, a novel prism coupling structure is designed for the ethanol concentration sensor by use of the unique feature of graphene oxide (GO) to ethanol in water, and the TiO2-ZnO composite film is chosen to enhance surface plasmon resonance with molybdenum disulfide — graphene oxide hybrid nano-sheet. The thickness of each layer for the structure are analyzed to get the optimal value by the finite element method, in order that the sensitivity is able to be improved greatly. The optimal thickness of each layer is given, and the sensitivity of surface plasmon resonance ethanol concentration sensor can reach as high as 0.089% conc. within the detection range of ethanol concentration, 0–80°/% conc. And the relationship between surface plasmon resonance angle and ethanol concentration is obtained within the detection range of ethanol concentration.

Keywords:

surface plasmon resonance, sensitivity, graphene oxide, TiO2-ZnO, ethanol concentration, finite element method

OCIS codes: 130.6010, 230.0230, 240.6680, 260.0260

References:

1. Betz J.M., Nikelly J.G. Determination of ethanol in alcoholic beverages by liquid chromatography using the UV detector // J. Chromatogr. Sci. 1987. V. 25(9). P. 391–394.
2. Kurauchi Y., Yanai T., Egashira N., et al. Fiber-optic sensor with a chitosan/poly(vinyl alcohol) cladding for the determination of ethanol in alcoholic beverages // Analytical Sciences. 1994. V. 10(1). P. 213–217.

3. Edy Wijaya, Cédric Lenaerts, Sophie Maricot, Juriy Hastanin, Serge Habraken, Jean-Pierre Vilcot, Rabah Boukherroub, Sabine Szunerits. Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies // Current Opinion in Solid State and Materials Science. 2011. V. 15. P. 208–224.
4. Abdennour Abbas, Matthew J. Linman, Quan Cheng. Sensitivity comparison of surface plasmon resonance and plasmonwaveguide resonance biosensors // Sensors and Actuators B. 2011. V. 156. P. 169–175.
5. Homola J., Yee S.S., Gauglitz G. Surface plasmon resonance sensors: review // Sens. Actuator B. 1999. V. 54. P. 3–15.
6. Nair R.R., Wu H., Jayaram P.N., Grigorieva I.V., Geim K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes // Science. 2012. V. 335 (6067). P. 442–444.
7. Joshi R.K., Carbone P., Wang F.C., Kravets V.G., Su Y., Grigorieva I.V., Wu H., Geim K., Nair R.R. Precise and ultrafast molecular sieving through graphene oxide membranes // Science. 2014. V. 343. P. 752–754.
8. Michela Cittadini, Marco Bersani, Francesco Perrozzi, Luca Ottaviano, Wojtek Wlodarski, Alessandro Martucci. Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas Sensor // CARBON. 2014. V. 69. P. 452–459.
9. Zhang H., Sun Y., Gao S., Zhang J., Zhang H., Song D. Novel graphene oxide based surface plasmon resonance biosensor for immunoassay // Small. 2013. V. 9. P. 2537–2540.
10. Arasu P.T., Noor A.S.M., Shabaneh A.A., Yaacob M.H., Lim H.N., Mahdi M.A. Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer // Optics Communications. 2016. V. 380. P. 260–266.
11. Kim J.A., Hwang T., Dugasani S.R., Amin R., Kulkarni R., Park S.H., Kim T., Graphene based fiber optic surface Plasmon resonance for bio-chemical sensor applications // Sens. Actuators B: Chem. 2013. V. 187. P. 426–433.
12. Mak K.F., Changgu Lee, James Hone, Jie Shan, Tony F. H. Atomically thin MoS2: a new direct-gap semiconductor // Physical Review Letters. 2010. V. 105. P. 136805.
13. Qingling Ouyang, Shuwen Zeng, Xuan-Quyen Dinh, Philippe Coquet, Ken-Tye Yong. Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance // Biosensor. Procedia Engineering. 2016. V. 140. P. 134–139.
14. Roy K., Padmanabhan M., Goswami S., Sai T.P., Ramalingam G., Raghavan S., Ghosh A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices // Nat. Nanotechnol. 2013. V. 8. P. 826–830.
15. Cheng X.L., Zhao H., Huo L.H., Gao S., Zhao J.G. ZnO nanoparticulate thin film: preparation, characterization and gassensing property // Sens. Actuator B. 2004. V. 102. P. 248–252.
16. Mahanti M., Basak D. Highly enhanced UV emission due to surface plasmon resonance in Ag-ZnO nanorods // Chem. Phys. Lett. 2012. V. 542. P. 110–116.
17. Sarika Shukla, Navneet K. Sharm, Vivek Sajal. Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study // Sensors and Actuators B. 2015. V. 206. P. 463–470.
18. Rizwan Khan, Periyayya Uthirakumar, Kang-Bin Bae, See-Jong Leem, In-Hwan Lee. Localized surface plasmon enhanced photo luminescence of ZnO nanosheets by Au nanoparticles // Materials Letters. 2016. V. 163. P. 8–11.
19. Ma Y., Du G.T., Yang S.R., Li Z.T., Zhao B.J., Yang X.T., Yang T.P., Zhang Y.T., Liu D.L. Control of conductivity type in undoped ZnO thin films grown bymetalorganic vapour phase epitaxy // J. Appl. Phys. 2004. V. 95. P. 6268–6272.
20. Park J.H., Kim S., Bard A.J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting // Nano Lett. 2006. V. 6 (1). P. 24–28.
21. Manera M.G., Leo G., Curri M.L., Comparelli R., Rella R., Agostiano A., Vasanelli L. Determination of optical parameters of colloidal TiO2 nanocrystals-based thin fi lms by using surface plasmon resonance measurements for sensing applications // Sens. Actuator B. 2006. V. 115. P. 365–373.
22. Bao-Hsien Wu, Wei-Ting Liu, Tzu-Yu Chen, Tsong-Pyng Perng, Jer-Hsing Huang, Lih-Juann Chen. Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays // Nano Energy. 2016. V. 27. P. 412–419.
23. Manera M.G., Cozzoli P.D., Curri M.L., Leo G., Rella R., Agostiano A., Vasanelli L. TiO2 nanocrystal films for sensing applications based on surface plasmon resonance // Synthetic Met. 2005. V. 148. P. 25–29.
24. Lin C.W., Chen K.P., Hsiao C.N., Lin S., Lee C.K. Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor // Sens. Actuators B. 2016. V. 113. P. 169–176.
25. Hsu L.S., Yeh C.S., Kuo C.C., Huang B.R., Dhar S. Optical and transport properties of undoped and Al-, Ga- and In-doped ZnO thin films // J. Optoelectron. Adv. Mater. 2005. V. 7. P. 3039–3046.
26. Gupta B.D., Sharma A.K. Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study // Sens. Actuators B-Chem. 2005. V. 107. P. 40–46.
27. Castellanos-Gomez A., Agrait N., Rubio-Bollinger G. Optical identification of atomically thin dichalcogenide crystals // Appl. Phys. Lett. 2010. V. 96. P. 213116.
28. Bahar Meshginqalam, Mohammad Taghi Ahmadi, Razali Ismail, Arash Sabatyan. Graphene/Graphene oxide-based ultrasensitive surface plasmon resonance biosensor // Plasmonics. 2017. V. 12. P. 1991–1997.
29. Alka Verma, Arun Prakash, Rajeev Tripathi. Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap // Optics Communications. 2015. V. 357. P. 106–112.
30. Maurya J.B., Prajapati Y.K., Singh V., Saini J.P. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer // Appl. Phys. A. 2015. V. 121. P. 525–533.