DOI: 10.17586/1023-5086-2019-86-04-59-62
УДК: 666.189.2
Multicore large-aperture fiber-optic probe based on quartz–quartz-type lightguides for near-infrared fluorimeters
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Шилов И.П., Даниелян Г.Л., Замятин А.А., Маковецкий А.А., Кочмарев Л.Ю. Многожильный высокоапертурный волоконно-оптический зонд на основе световодов типа кварц–кварц для флуориметров ближнего инфракрасного спектрального диапазона // Оптический журнал. 2019. Т. 86. № 4. С. 59–62. http://doi.org/10.17586/1023-5086-2019-86-04-59-62
Shilov I.P., Danielyan G.L., Zamyatin A.A., Makovetskiy A.A., Kochmarev L.Yu. Multicore large-aperture fiber-optic probe based on quartz–quartz-type lightguides for near-infrared fluorimeters [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 4. P. 59–62. http://doi.org/10.17586/1023-5086-2019-86-04-59-62
I. P. Shilov, G. L. Danielyan, A. A. Zamyatin, A. A. Makovetskiĭ, and L. Yu. Kochmarev, "Multicore large-aperture fiber-optic probe based on quartz–quartz-type lightguides for near-infrared fluorimeters," Journal of Optical Technology. 86(4), 243-245 (2019). https://doi.org/10.1364/JOT.86.000243
The optimization problem of the parameters of lightguides for fiber-optic probes used in fluorescent tumor diagnostics (of benign and malignant tumors) is considered. It has been shown that, to increase the sensitivity of a fluorimeter in the near-infrared region, it is promising to use fiber lightguides of the quartz–quartz type, with an increased numerical aperture of up to 0.30 and a biocompatible protective coating of P-12 polyamide or tetrafluoroethylene copolymer with Tefzel ethylene, as probe lightguides for detecting luminescence. Using such lightguides, a prototype version of a 19-core large-aperture fiber-optic probe for a laser oncofluorometer with increased sensitivity operating in the spectral range 900–1100 nm has been developed. The minimum dose of the injected drug was 10 μg/kg of bio-object weight, which corresponds to a world-class level of sensitivity of photosensitizer detection in biological tissues.
fiber-optic probe, fluorescent tumor diagnostics, photosensitizer, fiber lightguide
OCIS codes: 170.010:20.0220
References:1. V. V. Tuchin, Lasers and Fiber Optics in Biomedical Research (Fiz.-Mat. Lit., Moscow, 2010).
2. I. P. Shilov, A. V. Ivanov, V. D. Rumyantseva, and A. F. Mironov, “Luminescent diagnostics of visually and endoscopically accessible tumors based on non-phototoxic ytterbium porphyrin complexes,” in Biophysical Medical Technologies, A. I. Grigor’iev and Yu. A. Vladimirov, eds. (Max Press, Moscow, 2015), vol. 2, pp. 110–145.
3. V. I. Chissov, V. V. Sokolov, N. N. Bulgakova, and E. V. Filonenko, “Fluorescence endoscopy, dermascopy, and spectrophotometry for diagnosis of malignant tumors,” Ross. Bioterapevticheskii Zh. 2(4), 45–56 (2003).
4. N. N. Bulgakova, N. I. Kazachkina, V. V. Sokolov, and V. V. Smirnov, “Local fluorescence spectroscopy and detection of malignancies using laser excitation at various wavelengths,” Laser Phys. 16(5), 889–895 (2006).
5. LÉSA-01-BIOSPEC setup, http://www.Biospec.ru.
6. V. A. Babenko, L. Yu. Kochmarev, and I. P. Shilov, “Microwave discharge of a waveguide plasma torch for the deposition of large-aperture structures based on quartz glass,” Radiotekh. Electron. 50(1), 100–107 (2005).
7. A. A. Zamyatin, A. A. Makovetskiı˘, and I. P. Shilov, “Quartz–quartz and quartz–polymer high power fiber lightguides with a thermoplastic protective coating deposited directly in the process of their drawing,” Radiotekh. Electron. 49(9), 1150–1152 (2004).
8. A. S. Biryukov, V. A. Bogatyrev, and A. G. Khitun, “Modeling the liquid freezing method for deposition of a metallic coating on optical fibers,” Zh. Tekh. Fiz. 67(1), 100–109 (1997).
9. I. S. Yavelov, S. M. Kaplunov, and G. L. Danielyan, Fiber Optic Measuring Systems: Applied Problems (Izd. Inst. Komp. Issled., Moscow-Izhevsk, 2011).