DOI: 10.17586/1023-5086-2019-86-05-03-10
УДК: 535.015
Determining the wave-front deformations of a light beam due to waviness of optical surfaces
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Сиразетдинов В.С., Дмитриев И.Ю., Линский П.М., Никитин Н.В. Определение деформаций волнового фронта светового пучка, вызванных волнистостью оптических поверхностей // Оптический журнал. 2019. Т. 86. № 5. С. 3–10. http://doi.org/10.17586/1023-5086-2019-86-05-03-10
Sirazetdinov V.S., Dmitriev I.Yu., Linskiy P.M., Nikitin N.V. Determining the wave-front deformations of a light beam due to waviness of optical surfaces [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 5. P. 3–10. http://doi.org/10.17586/1023-5086-2019-86-05-03-10
V. S. Sirazetdinov, I. Yu. Dmitriev, P. M. Linsky, and N. V. Nikitin, "Determining the wave-front deformations of a light beam due to waviness of optical surfaces," Journal of Optical Technology. 86(5), 261-267 (2019). https://doi.org/10.1364/JOT.86.000261
This paper presents a method of determining the wave-front deformations of a focused light beam due to waviness of optical surfaces. The relationship on which the method is based is found that connects the wave-front deformations with intensity fluctuations in the image of a beam outside the focal region. Numerical simulation of the method and experimental studies of a light beam distorted by the wavy surface of a parabolic mirror showed that wave-front deformations can be determined to within a relative error of 10% in the range from a few nanometers to several hundred nanometers.
light beam, wave-front deformation, waviness of optical surface, intensity fluctuations
OCIS codes: 120.0120, 260.0260
References:1. W. B. Wetherell, “The calculation of image quality,” in Design of Optical Systems, R. R. Shannon and J. C. Wyant, eds. (Academic Press, 1980; Mir, Moscow, 1983), pp. 178–332.
2. C. O. Jones, “Space telescope optics,” Opt. Eng. 18(3), 273–280 (1979).
3. V. K. Kirillovskiı˘ and E. V. Gavrilov, “Innovation monitoring methods when fabricating high-precision aspheric surfaces,” in Optical Measurements, part 7 (GU ITMO, St. Petersburg, 2009).
4. J. Y. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu. Runkel, M. R. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
5. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27(7), 1223–1225 (1988).
6. C. Roddier and F. Roddier, “Wave-front reconstruction from defocused images and testing of ground-based optical telescopes,” J. Opt. Soc. Am. A 10(11), 2277–2287 (1993).
7. V. S. Sirazetdinov, I. Yu. Dmitriev, P. M. Linskiı˘, and N. V. Nikitin, “Method of determining the wave-front deformations of a light beam,” Russian Federation Patent No. 2,680,615 (2019).
8. V. I. Tatarskiı˘, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1979).
9. L. V. Kantorovich and V. I. Krylov, Approximation Methods of Higher Analysis (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1962).
10. Yu. A. Kravtsov and Yu. I. Orlov, “Limits of applicability of the method of geometric optics and related problems,” Sov. Phys. Usp. 23(11), 750–762 (1980) [Usp. Fiz. Nauk 132(3), 475–496 (1980)].