DOI: 10.17586/1023-5086-2019-86-05-36-44
УДК: 539.5, 528.526.6, 53.096
Using the transversely isotropic characteristics of the coil to calculate the thermal-drift parameters of a fiber-optic gyroscope
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Есипенко И.А., Лыков Д.А., Сметанников О.Ю. Применение трансверсально-изотропных характеристик контура для расчета параметров теплового дрейфа волоконно-оптического гироскопа // Оптический журнал. 2019. Т. 86. № 5. С. 36–44. http://doi.org/10.17586/1023-5086-2019-86-05-36-44
Esipenko I.A., Lykov D.A., Smetannikov O.Yu. Using the transversely isotropic characteristics of the coil to calculate the thermal-drift parameters of a fiber-optic gyroscope [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 5. P. 36–44. http://doi.org/10.17586/1023-5086-2019-86-05-36-44
I. A. Esipenko, D. A. Lykov, and O. Y. Smetannikov, "Using the transversely isotropic characteristics of the coil to calculate the thermal-drift parameters of a fiber-optic gyroscope," Journal of Optical Technology. 86(5), 289-295 (2019). https://doi.org/10.1364/JOT.86.000289
This paper discusses the possibility of going from a structurally inhomogeneous model of the coil to a homogeneous transversely isotropic medium when calculating the thermal drift of a fiber-optic gyroscope in order to economize on computational resources. The transition to the effective characteristics is carried out by means of a series of computational experiments using the method of finite elements and analytic formulas. Satisfactory matching between the models of the materials studied here was demonstrated during the subsequent computation of the thermal drift. Calculated results in accordance with the experimental data are supplied for two layouts of the winding of the fiber coil—quadrupolar and octupolar. It is shown that using a material with effective characteristics reduces the requirement for RAM and calculation time by an order of magnitude.
fiber-optic gyroscope, fiber coil, quadrupolar winding layout, octupolar winding layout, thermal drift, pparent angular velocity, thermooptic effect, elastooptic effect, transversely isotropic model of the material, quasi-steady-state problem of thermoelasticity, method of finite elements
OCIS codes: 060.2800, 060.2290
References:1. A. G. Sheremet’ev, The Fiber-Optic Gyroscope (Radio i Svyaz’, Moscow, 1987).
2. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, Boston, 2014).
3. A. A. Untilov, D. A. Egorov, A. V. Rupasov, R. L. Novikov, S. T. Neforosnyi, M. P. Azbeleva, and E. V. Dranitsyna, “Results of testing a fiber-optic gyroscope,” Giroskopiya Navig. (3), 78–85 (2017).
4. I. K. Meshkovskiı˘, G. P. Miroshnichenko, A. V. Rupasov, V. E. Strigalev, and I. A. Sharkov, “How do thermal actions affect the operation of a fiber-optic sensor of angular velocity?” in Twenty-First St. Petersburg International Conference on Integrated Navigation Systems (Kontsern TsNII Élektropribor, 2014), pp. 191–202.
5. E. I. Vakhrameev, K. S. Galyagin, A. M. Oshivalov, and M. A. Savin, “Method of numerical prediction and correction of thermal drift of the fiber-optic gyro,” Izv. Vyssh. Ucheb. Zaved. Prib. 60(1), 32–38 (2017).
6. E. V. Dranitsyna, D. A. Egorov, A. A. Untilov, G. B. Deineka, I. A. Sharkov, and I. G. Deineka, “Reducing the effect of temperature variations on FOG output signal,” Giroskopiya Navig. (4), 10–20 (2012).
7. K. S. Galyagin, M. A. Oshivalov, and M. A. Savin, “Taking piezooptical effects into account when modeling thermal drift of a fiber-optic gyroscope,” Vest. PNIPU Mekh. (4), 55–71 (2015).
8. I. A. Esipenko and D. A. Lykov, “Mathematical model of the thermal drift of a fiber-optic gyroscope and its experimental verification,” Vest. MGTU im. N.É. Baumana Ser. Prib. (5), 31–46 (2017).
9. W. Ling, X. Li, Z. Xu, Z. Zhang, and Y. Wei, “Thermal effects of fiber sensing coils in different winding pattern considering both thermal gradient and thermal stress,” Opt. Commun. 356, 290–295 (2015).
10. E. I. Vakhrameev, K. S. Galyagin, A. S. Ivonin, M. A. Oshivalov, and T. A. Ulrich, “Thermal drift of a fiber-optic gyroscope,” Izv. Vyssh. Ucheb. Zaved. Prib. 54(1), 32–37 (2011).
11. A. M. Kurbatov and R. A. Kurbatov, “Temperature characteristics of the sensing coils of a fiber-optic gyroscope,” Radiotekh. Elektron. 58(7), 735–742 (2013).
12. Z. Gao, Y. Zhang, G. Wang, and W. Gao, “Analysis and simulation for the thermal performance of the octupolar fiber coil,” Opt. Eng. 53(1), 016114 (2014).
13. S. Ogut, B. Osunluk, and E. Ozbay, “Modeling of thermal sensitivity of a fiber optic gyroscope coil with practical quadrupole winding,” Proc. SPIE 10208, 1020806 (2017).
14. F. Schadt and F. Mohr, “Error signal formation in FOGs through thermal and elastooptical environment influence on the sensing coil,” in Inertial Sensors and Systems Conference, Karlsruhe, Germany, 20–21 September 2011, pp. 2.1–2.13.
15. A. G. Gasparyan and I. A. Esipenko, “Determining the mechanical characteristics of a transversely isotropic fiber coil from the isotropic properties of the components,” Vestn. Permsk. Nats. Issled. Politekh. Univ. Mekh. (1), 57–67 (2016).
16. S. Minakuchi, T. Sanada, N. Takeda, S. Mitani, T. Mizutani, Y. Sasaki, and K. Shinozaki, “Thermal strain in lightweight composite fiber-optic gyroscope for space application,” J. Lightwave Technol. 33(12), 2658–2662 (2014).
17. E. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS® (CRC Press, Boca Raton, Florida, 2013).
18. V. Novatskiı˘, Elasticity Theory (Mir, Moscow, 1975).
19. Yu. V. Sokolkin and A. A. Tashkinov, The Mechanics of Deformation and Breakdown of Structurally Inhomogeneous Bodies (Nauka, Moscow, 1984).
20. O. F. Tirat and J.-M. Euverte, “Finite element model of thermal transient effect in fiber optic gyro,” Proc. SPIE 2837, 230–238 (1996).
21. D. M. Shupe, “Thermally induced non-reciprocity in the fiber-optic interferometer,” Appl. Opt. 19(5), 654–655 (1980).
22. C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt. 17(18), 2867–2869 (1978).
23. F. Mohr and F. Schadt, “Bias error in fiber optic gyroscopes due to elastooptic interactions in the sensor fiber,” Proc. SPIE 5502, 410–413 (2004).
24. V. Novatskiı˘, Dynamic Problems in Thermoelasticity (Mir, Moscow, 1970).
25. I. A. Esipenko and D. A. Lykov, “Numerical calculation and experimental verification of the fictive angular velocity of a fiber-optic gyroscope under nonsteady-state temperature action on its coil,” Vychisl. Mekh. Sploshnykh Sred 10(3), 313–323 (2017).