DOI: 10.17586/1023-5086-2019-86-06-03-06
УДК: 535.42
Single- and multilayer kinoform elements for compact mid-infrared objectives
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Грейсух Г.И., Антонов А.И., Ежов Е.Г. Одно- и многослойные киноформные элементы для компактных объективов среднего инфракрасного диапазона // Оптический журнал. 2019. Т. 86. № 6. С. 3–6. http://doi.org/10.17586/1023-5086-2019-86-06-03-06
Greysukh G.I., Antonov A.I., Ezhov E.G. Single- and multilayer kinoform elements for compact mid-infrared objectives [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 6. P. 3–6. http://doi.org/10.17586/1023-5086-2019-86-06-03-06
G. I. Greĭsukh, A. I. Antonov, and E. G. Ezhov, "Single- and multilayer kinoform elements for compact mid-infrared objectives," Journal of Optical Technology. 86(6), 327-330 (2019). https://doi.org/10.1364/JOT.86.000327
It is shown that the introduction of a kinoform element into the optical layout of a refractive triplet makes it possible to reduce both chromatic and monochromatic aberrations to an acceptable level, thereby obtaining a high-aperture infrared objective capable of forming an image with a high resolution over a fairly wide angular field. In this case, the diffraction efficiency of the kinoform element, predicted through rigorous diffraction theory, will not fall below 0.8 over the entire operating spectral range. The possibilities of increasing the diffraction efficiency to 0.9 or 0.95 owing to the use of two- or three-layer kinoform microstructures are demonstrated.
infrared objective, kinoform element, aberrations correction, diffraction efficiency
OCIS codes: 110.3080, 220.2740, 050.1970
References:1. H. Wang, Y. Bai, and J. Luo, “Hybrid refractive/diffractive optical system design for light and compact uncooled longwave infrared imager,” Proc. SPIE 8416, 84162N (2012).
2. S. N. Bezdid’ko and A. V. Tarasishin, “Compact mid-IR objective,” Russian patent 2621366 (2017).
3. ZEMAX: software for optical system design, https://www.zemax.com/.
4. H. Xie, D. Ren, C. Wang, C. Mao, and L. Yang, “Design of high-efficiency diffractive optical elements towards ultrafast mid-infrared time-stretched imaging and spectroscopy,” J. Mod. Opt. 65(3), 255–261 (2018).
5. Edmund Optics germanium infrared (IR) hybrid aspheric lenses, https://www.edmundoptics.com/f/germanium-infrared-ir-hybrid-aspheric-lenses/14182/.
6. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).