DOI: 10.17586/1023-5086-2019-86-06-30-35
УДК: 620.1.08 620.1.08
Integrated approach for monitoring the diameter and temperature of thin cylindrical extended objects
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Порев В.А., Галаган Р.М., Томашук А.С. Комплексный подход для контроля диаметра и температуры тонких цилиндрических протяжённых объектов // Оптический журнал. 2019. Т. 86. № 6. С. 30–35. http://doi.org/10.17586/1023-5086-2019-86-06-30-35
Porev V.A., Galagan R.M., Tomashuk A.S. Integrated approach for monitoring the diameter and temperature of thin cylindrical extended objects [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 6. P. 30–35. http://doi.org/10.17586/1023-5086-2019-86-06-30-35
V. A. Porev, R. M. Galagan, and A. S. Tomashuk, "Integrated approach for monitoring the diameter and temperature of thin cylindrical extended objects," Journal of Optical Technology. 86(6), 350-354 (2019). https://doi.org/10.1364/JOT.86.000350
This paper briefly describes an optical device for combined measurement of the diameter of heated long cylindrical items and components, such as metal wire, optical fiber, and chemical fiber, using a diffraction method, as well as determining their surface temperature based on the radiance of thermal radiation. The main advantage of the proposed method is that it can monitor the parameters of the heated item, even in an out-of-focus image. An approach based on image processing methods is also proposed to improve the measurement methods.
optical monitoring, diameter, temperature, wire, optical fiber, image processing
OCIS codes: 150.5495, 120.6650, 120.6780
References:1. A. Mawardi and R. Pitchumani, “Optical fiber drawing process model using an analytical neck-down profile,” IEEE Photon. J. 2(4), 620–629 (2010).
2. S. Supriadi, T. Furushima, and K. Manabe, “Development of precision profile control system with fuzzy model and correction function for tube dieless drawing,” J. Solid Mech. Mater. Eng. 5(12), 1059–1070 (2011).
3. Y. He, X. Liu, F. Qin, and J.-x. Xie, “Rectifying control of wire diameter during dieless drawing by a deformation measuring method of interframe displacement,” Int. J. Miner. Metall. Mater. 19(7), 615–621 (2012).
4. S. Supriadi, T. Furushima, and K. Manabe, “Real-time process control system of dieless tube drawing with an image processing approach,” Mater. Trans. 53(5), 862–869 (2012).
5. A. Milenin, P. Kustra, P. Du, S. Furusawa, and T. Furushima, “Computer aided design of the laser dieless drawing process of tubes from magnesium alloy with take into account ductility of the material,” Procedia Manuf. 15, 302–310 (2018).
6. Y. M. Hwang, G. W. Kuo, and H. H. Liu, “High temperature oxidation behavior in dieless drawing of titanium alloy wires,” Procedia Manuf. 15, 294–301 (2018).
7. A. Tomashuk, “Device for monitoring the temperature and diameter of an extended cylindrical object in the high-temperature manufacturing process,” IOP Conf. Ser.: Mater. Sci. Eng. 450(3), 032018 (2018).
8. I. N. Tilikin, T. A. Shelkovenko, S. A. Pikuz, and D. A. Hammer, “Determination of radiation source size by calculating diffraction patterns,” Opt. Spektrosk. 115, 128–156 (2013).
9. E. M. Fedorov and I. D. Bortnikov, “Monitoring outer diameter of extended items based on optical diffraction method,” Zh. Tekh. Fiz. 85, 117–120 (2015).
10. E. M. Fedorov, “Optical laser diffraction transducer for measuring single-wire electric cable eccentricity,” IOP Conf. Ser.: Mater. Sci. Eng. 81, 012074 (2015).
11. V. A. Porev and A. S. Tomashuk, “Control of parameters of heated wire in process of drawing,” Tekh. Diagn. Nerazrushayushchiı˘ Kontrol 4, 52–55 (2017).
12. H. Jafari, Thermo-mechanical Investigation of Die-less Wiredrawing Process (University of British Columbia, Vancouver, 2013).
13. R. Gonzalez and R. Woods, Digital Image Processing (Pearson, 2018).