ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-06-64-70

УДК: 535.211

Optical breakdown threshold of silver halide polycrystalline structures acted on by the pulsed radiation of a Ho:YAG laser

For Russian citation (Opticheskii Zhurnal):

Юдин Н.Н., Зиновьев М.М., Корсаков В.С. Порог оптического пробоя галогенидосеребряных поликристаллических структур при воздействии импульсным излучением Ho:YAG лазера // Оптический журнал. 2019. Т. 86. № 6. С. 64–70. http://doi.org/10.17586/1023-5086-2019-86-06-64-70

 

Yudin N.N., Zinoviev M.M., Korsakov V.S. Optical breakdown threshold of silver halide polycrystalline structures acted on by the pulsed radiation of a Ho:YAG laser [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 6. P. 64–70. http://doi.org/10.17586/1023-5086-2019-86-06-64-70  

For citation (Journal of Optical Technology):

N. N. Yudin, M. M. Zinov’ev, and V. S. Korsakov, "Optical breakdown threshold of silver halide polycrystalline structures acted on by the pulsed radiation of a Ho:YAG laser," Journal of Optical Technology. 86(6), 379-384 (2019). https://doi.org/10.1364/JOT.86.000379

Abstract:

The optical breakdown thresholds are determined for 100-μm-thick polycrystalline plates made from AgBr0.99I0.01, Ag0.95Tl0.05Br0.95I0.05, and AgBr0.75Cl0.25 when they are irradiated by a Ho:YAG laser at 2.096 μm (pulse-repetition rate 10 kHz and pulse width 25 ns). The dependences of the transmittances of these samples on the mean power of the laser radiation are obtained. It is shown that the optical breakdown threshold depends on the transmittance of the material. The mean optical breakdown threshold of the samples lies in the region from 0.89±0.09 to 1.13±0.09  J/cm2.

Keywords:

halide, optical breakdown threshold, optical fiber

Acknowledgements:

The research was supported by the Russian Science Foundation (project No. 18-73-10063).

OCIS codes: 140.3330

References:

1. G. Hansson and D. D. Smith, “Mid-infrared-wavelength generation in 2-μm pumped periodically poled lithium niobate,” Appl. Opt. 37, 5743–5746 (1998).
2. J. Hellström, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Efficient nanosecond optical parametric oscillators based on periodically poled KTP emitting in the 1.8-2.5-μm spectral region,” Opt. Lett. 24, 1233–1235 (1999).
3. O. L. Antipov, I. D. Eranov, and R. I. Kositsyn, “10-W mid-IR optical parametric oscillators based on ZnGeP 2 elements pumped by a fibre-laser-pumped Ho:YAG Laser. Experimental and numerical study,” Quantum Electron 47(7), 601–606 (2017) [Kvant. Elektron. (Moscow) 47(7), 601–606 (2017)].
4. B.-Q. Yao, Y.-J. Shen, X.-M. Duan, T.-Y. Dai, Y.-L. Ju, and Y.-Z. Wang, “A 41-W ZnGeP 2 optical parametric oscillator pumped by a Q-switched Ho:YAG laser,” Opt. Lett. 39(23), 6589–6592 (2014).
5. A. I. Gribenyukov, S. M. Vatnik, V. V. Demin, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Energy and spectral characteristics of a parametric generator based on a nonlinear ZnGeP 2 crystal pumped by a Ho:YAG laser,” Quantum Electron 48(7), 603–606 (2018) [Kvant. Elektron. (Moscow) 48(7), 603–606 (2018)].
6. A. N. Soldatov, N. V. Sabotinov, E. L. Latush, G. D. Chebotarev, N. K. Vuchkov, and N. A. Yudin, Strontium and Calcium Vapour Lasers, vol. I [in Bulgarian] (Professor Marin Drinov Academic Publishing House, Sofia, 2013).
7. A. N. Soldatov, N. V. Sabotinov, E. L. Latush, G. D. Chebotarev, N. K. Vuchkov, and N. A. Yudin, Strontium and Calcium Vapour Lasers, vol. II [in Bulgarian] (Professor Marin Drinov Academic Publishing House, Sofia, 2014).
8. A. V. Vladykin, O. N. Eremekin, N. G. Zakharov, A. P. Savikin, and V. V. Sharkov, “Effective tunable laser based on polycrystalline Cr:ZnSe with pulsed-periodic pumping,” Vestn. Nizhegorod. Univ. im. N. I. Lobachevskogo (5), 85–87 (2011).
9. N. G. Zakharov, O. L. Antipov, V. V. Sharkov, and A. P. Savikin, “Efficient lasing at 2.1 μm in a Ho:YAG laser pumped by a Tm:YLE laser,” Quantum Electron. 40(2), 98–100 (2010) [Kvant. Elektron. (Moscow) 40(2), 98–100 (2010)].
10. V. K. Sysoev, P. A. Vyatlev, A. V. Zakharchenko, A. N. Soldatov, and A. V. Vasil’eva, “Using a strontium-vapor IR laser for controllable thermal incandescence of oxide glasses,” Fiz. Khim. Obrab. Mater. (3), 3–16 (2007).
11. V. A. Parfenov, Laser Microprocessing of Materials (St. Petersburg, SPbGÉTU, 2011).
12. O. A. Romanovski, “Technique and results of a search for informative wavelengths for probing the gaseous components of the atmosphere,” Prikl. Fiz. (1), 24–30 (2009).
13. D. A. Bochkovski, A. V. Vasil’eva, G. G. Matvienko, Yu. P. Polunin, O. A. Romanovski, A. N. Soldatov, O. V. Kharchenko, N. A. Yudin, and S. V. Yakovlev, “Using a strontium-vapor laser to resolve problems of the laser probing of of the gaseous composition of the atmosphere,” Opt. Atm. Okeana 24(11), 985–989 (2011).
14. A. B. Shigapov and Sh. D. Yarkhamov, “Determining the size of disperse particles by varying the radiation-scattering parameters,” Izv. Vyssh. Uchebn. Zaved. Aviats. Tekh. (4), 58–60 (2004).
15. A. N. Soldatov, Yu. P. Polunin, A. S. Shumeko, A. V. Vasil’eva, and Y. A. Loyeva, “Ablation of biological tissues under the action of the radiation of a strontium-vapor laser,” Izv. Vyssh. Uchebn. Zaved. Fiz. 10(2), 39–42 (2013).
16. A. N. Soldatov, Yu. P. Polunin, A. V. Vasil’eva, I. D. Kostyrya, and D. A. Kukshausen, “Strontium-vapor-based generator-amplifier system for ablating dental tissue,” Biotekhnosfera (3-4(21-22)), 47–51 (2012).
17. G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, R. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
18. M. S. Hutson and G. S. Edwards, “Advances in the physical understanding of laser surgery at 6.45 microns,” in 26th International Free Electron Laser Conference and 11th FEL User Workshop, 2004, p. 648.
19. K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser,” Lasers Surg. Med. 27(3), 191–205 (2000).
20. M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39(3), 230–236 (2007).
21. G. Stoeppler, N. Thilmann, V. Pasiskevicius, A. Zukauskas, C. Canalias, and M. Eichhorn, “Tunable Mid-infrared ZnGeP2 RISTRA OPO pumped by periodically poled Rd:KTP optical parametric master-oscillator power amplifier,” Opt. Express 20(4), 4509–4517 (2012).
22. W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, Jr., R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
23. A. I. Gribenyukov, V. V. Demin, A. S. Olshukov, S. N. Podzvalov, I. G. Polovtsev, and N. N. Yudin, “Studying the optical breakdown process of ZnGeP2 crystals by digital holography,” Izv. Vyssh. Uchebn. Zaved. Fiz. 60(11), 89–98 (2017).
24. A. I. Gribenyukov, V. V. Dyomin, I. G. Polovtsev, I. Y. Kutuzov, and N. N. Yudin, “Development principals of three cascaded terahertz laser with generation of difference frequency radiation in the nonlinear optical crystal ZnGeP 2 for terahertz holography,” Proc. SPIE 1046, 1046628 (2017).
25. G. V. Yukhnevich, The Infrared Spectroscopy of Water (Nauka, Moscow, 1972).
26. A. S. Korsakov, D. S. Vrublevsky, A. E. Lvov, and L. V. Zhukova, “Refractive index dispersion of AgCl1−xBrx (0 ≤ x ≤ 1) and Ag1−xTlx Br1−xIx (0 ≤ x ≤ 0, 05),” Opt. Mater. 64, 40–46 (2017).

27. A. Korsakov, D. Salimgareev, A. Lvov, and L. Zhukova, “IR spectroscopic determination of the refractive index of Ag1−xTlx Br1−0.54xI0.54x (0 ≤ x ≤ 0.05) crystals,” Opt. Laser Technol. 93, 18–23 (2017).
28. A. Lvov, D. Salimgareev, M. Korsakov, A. Korsakov, and L. Zhukova, “Structure modeling and manufacturing PCFs for the range of 2-25 μm,” Opt. Mater. 73, 337–342 (2017).
29. A. Korsakov, D. Vrublevsky, V. Korsakov, and L. V. Zhukova, “Investigating the optical properties of polycrystalline AgCl1−xBrx (0 ≤ x ≤ 1) and Ag 0.95 Tl 0.05 Br 0.95 I0.05 for IR engineering,” Appl. Opt. 54(26), 8004–8009 (2015).
30. “Lasers and laser-related equipment: Determination of laser-induced damage threshold of optical surfaces, part 2,” ISO 11254-2:2001(E), 2001.
31. S. D. Velikanov, A. V. Mukhin, and Yu. N. Frolov, “Efficient generation by a Ho:YAG laser with a diffraction-quality beam,” Trudy RFYaTs-VNIIÉF (20), 325–330 (2015).
32. R. P. Feynmann, “Space-time approach to quantum electrodynamics,” Phys. Rev. 76, 769–789 (1949).
33. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).