DOI: 10.17586/1023-5086-2019-86-06-77-80
УДК: 681.586.5, 621.384.3
Infrared sensor for remote monitoring of moisture content in raw cotton
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кулдашов О.Х., Кулдашов Г.О., Мамасодикова З.Ю. Инфракрасный датчик для дистанционного контроля влажности хлопка-сырца // Оптический журнал. 2019. Т. 86. № 6. С. 77–80. http://doi.org/10.17586/1023-5086-2019-86-06-77-80
Kuldashov O.Kh., Kuldashov G.O., Mamasodikova Z.Yu. Infrared sensor for remote monitoring of moisture content in raw cotton [in Russian] // Opticheskii Zhurnal. 2019. Т. 86. № 6. С. 77–80. http://doi.org/10.17586/1023-5086-2019-86-06-77-80
O. Kh. Kuldashov, G. O. Kuldashov, and Z. Yu. Mamasodikova, "Infrared sensor for remote monitoring of moisture content in raw cotton," Journal of Optical Technology. 86(6), 390-393 (2019). https://doi.org/10.1364/JOT.86.000390
An optoelectronic two-wave method is proposed for the remote monitoring of the moisture content in raw cotton. To develop this method, the absorption spectra of wet and dry cotton were compared and the optimal wavelengths for the measuring and reference channels were determined. An operational algorithm and a block diagram of the infrared sensor proposed for this method are provided. For the reference channel, light-emitting diodes (LEDs) with an emission spectrum maximum of 2.2 μm were used, whereas LEDs with an emission spectrum maximum of 1.94 μm were used for the measuring channel.
optoelectronics, absorption spectra, moisture meter, cotton moisture content, remote monitoring, absorption, light-emitting diodes, photodetector, infrared region
OCIS codes: 250.0250
References:1. Sh. M. Masharipov, “Analysis of modern methods and technical means of measuring the moisture contents of cotton materials,” Pribory 4, 31–37 (2016).
2. T. N. Danilova, B. E. Zhurtanov, A. N. Imenkov, and Yu. P. Yakovlev, “LEDs based on GaSb solid solutions for the mid-infrared region of 1.6–4.4 μm (Review),” Fiz. Tekh. Poluprovodn. 39(11), 1281–1311 (2005).
3. N. D. Stoyanov, B. E. Zhurtanov, A. P. Astakhova, A. N. Imenkov, and Yu. P. Yakovlev, “Highly efficient LEDs of the spectral range of 1.6–2.4 μm for medical diagnostics and environmental monitoring,” Fiz. Tekh. Poluprovodn. 37(8), 996–1009 (2003).
4. I. A. Andreev, E. V. Kunitsyna, M. P. Mikhailova, and Yu. P. Yakovlev, “Long-wavelength photodiodes based on Ga (1–x) In xAsy Sb(1–y) solid solutions with a composition near the boundary of the immiscibility region,” Fiz. Tekh. Poluprovodn. 33(2), 249–253 (1999).
5. A. N. Imenkov, B. E. Zhurtanov, A. P. Astakhova, K. V. Kalinina, M. P. Mikhaı˘lova, M. A. Sipovskaya, and N. D. Stoyanov, “Photodiodes for the spectral range of 1.1–2.4 μm based on n-GaSb/n-GaInAsSb/p-AlGaAsSb double heterostructure grown using rare-earth elements,” Pis’ma Zh. Tekh. Fiz. 35(2), 6–35 (2009).
6. M. Mukhitdinov, Optical Methods and Moisture Monitoring Devices (Énergoatomizdat, Moscow, 1986).