DOI: 10.17586/1023-5086-2019-86-07-27-34
УДК: 621.391.837.681.3]:[621, 681:723
Video-endoscopy system for photodynamic theranostics of central lung cancer
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Папаян Г.В., Акопов А.Л., Гончаров С.Е., Струй А.В., Казаков Н.В. Видеоэндоскопическая система для фотодинамической тераностики центрального рака легкого // Оптический журнал. 2019. Т. 86. № 7. С. 27–34. http://doi.org/10.17586/1023-5086-2019-86-07-27-34
Papayan G.V., Akopov A.L., Goncharov S.E., Struy A.V., Kazakov N.V. Video-endoscopy system for photodynamic theranostics of central lung cancer [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 7. P. 27–34. http://doi.org/10.17586/1023-5086-2019-86-07-27-34
G. V. Papayan, A. L. Akopov, S. E. Goncharov, A. V. Struĭ, and N. V. Kazakov, "Video-endoscopy system for photodynamic theranostics of central lung cancer," Journal of Optical Technology. 86(7), 414-419 (2019). https://doi.org/10.1364/JOT.86.000414
Theranostics is a new medical specialization that combines therapy with diagnostics. This paper describes a video-endoscopy system intended for the photodynamic theranostics of malignant tumors of the respiratory passages, in which treatment consists of photodynamic therapy, using photosensitizers of the chlorin series (visible region) and indocyanine green (near-IR region), while diagnosis is performed using the same agents, but now as fluorescence markers of the tumor. The system is based on a standard brochofibroscope that uses several diode lasers as light sources to provide photodynamic action, to excite fluorescence, and for observation in reflected white light. Visualization is carried out by a multispectral video system that relies on the fluorescence pattern to perform targeted irradiation of the tumor and to monitor the irradiation-energy dosage from the attenuation of the photosensitizer’s luminescence brightness. The possibilities of the system are illustrated by clinical examples.
fluorescence endoscopy, photodynamic therapy, theranostics, lung cancer
OCIS codes: 170.0110, 170.6280
References:1. C. Fitzmaurice, “Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disabilityadjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study,” JAMA Oncol. 3, 524–548 (2017).
2. K. Moghissi, M. R. Stringer, and K. Dixon, “Fluorescence photodiagnosis in clinical practice,” Photodiagn. Photodyn. Ther. 5(4), 235–237 (2008).
3. G. V. Papayan, N. N. Petrischev, and M. M. Galagudza, “Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemiareperfusion,” Photodiagn. Photodyn. Ther. 11(3), 400–408 (2014).
4. G. V. Papayan, I. Ya. Barskiı˘, and V. V. Titov, “Microfluorimeter for medical research,” Sov. J. Opt. Technol. 49(7), 438–439 (1982) [Opt. Mekh. Prom. (7), 34–37 (1982)].
5. R. R. Alfano, D. B. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser-induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20(12), 1507–1511 (1984).
6. B. Palcic, S. Lam, J. Hung, and C. MacAulay, “Detection and localization of early lung cancer by imaging techniques,” CHEST 99(3), 742–743 (1991).
7. S. Lam, C. MacAulay, J. C. le Riche, and B. Palcic, “Detection and localization of early lung cancer by fluorescence bronchoscopy,” Cancer 89(11), 2468–2473 (2000).
8. M. Leonhard, “New incoherent autofluorescence/fluorescence system for early detection of lung cancer,” Diagn. Ther. Endoscopy 5, 71–75 (1999).
9. G. V. Papayan, N. N. Petrishchev, S. V. Kim, H. H. Kim, V. B. Berezin, and U. Kang, “Possibilities of multispectral autofluorescence visualization of malignant tumors,” Fotodin. Ter. Fotodiagn. (4), 3–13 (2014).
10. J. Zhang, J. Wu, Z. Xu, Y. Yang, H. Liao, and Z. Liang, “Diagnostic accuracy of autofluorescence bronchoscopy for airway inflammatory changes in studies for cancer detection: a systematic review and meta-analysis,” EC Pulm. Respir. Med. 7(6), 370–378 (2018).
11. A. L. Akopov, A. A. Rusanov, G. V. Papayan, N. V. Kazakov, and A. V. Gerasin, “Endobronchial photodynamic therapy under fluorescence control: photodynamic theranostics,” Vestn. Khir. 175(5), 26–31 (2016).
12. A. L. Akopov, A. A. Rusanov, I. V. Chistyakov, N. V. Kazakov, A. V. Gerasin, A. Karlson, and G. V. Papayan, “Neoadjuvant and intraoperation photodynamic therapy for propagating non-small-cell lung cancer,” Fotodin. Ter. Fotodiagn. (1), 42–43 (2014).
13. A. Akopov, A. Rusanov, A. Gerasin, N. Kazakov, M. Urtenova, and I. Chistyakov, “Preoperative endobronchial photodynamic therapy improves resectability in initially irresectable (inoperable) locally advanced non-small-cell lung cancer,” Photodiagn. Photodyn. Ther. 11(3), 259–264 (2014).
14. A. L. Akopov, A. A. Rusanov, I. V. Chistyakov, M. A. Urtenova, N. V. Kazakov, A. V. Gerasin, and G. V. Papayan, “Using photodynamic therapy to reduce the volume of a resection in non-small-cell lung cancer,” Vopr. Onkol. 59(6), 740–744 (2014).
15. A. L. Akopov, I. V. Chistyakov, A. A. Rusanov, M. A. Urtenova, S. Yu. Dvoretsky, N. V. Kazakov, A. V. Gerasin, S. D. Gorbunkov, A. S. Agishev, A. A. Ilyin, and A. I. Romanikhin, “Reducing the resection volume in patients with non-small-cell lung cancer after neoadjuvant chemo- and photodynamic therapy,” Vest. Khir. 176(5), 38–42 (2017).
16. A. L. Akopov, A. A. Rusanov, N. V. Kazakov, G. V. Papayan, and I. V. Chistyakov, “Photodynamic therapy accompanying R1 nonradical resections in connection with lung cancer,” Vestn. Khir. 178(1), 21–24 (2019).
17. C.-H. Chiu, Y.-K. Chao, Y.-H. Liu, C.-T. Wen, W.-H. Chen, C.-Y. Wu, M.-J. Hsieh, Y.-C. Wu, and H.-P. Liu, “Clinical use of near-infrared fluorescence imaging with indocyanine green in thoracic surgery: a literature review,” J. Thorac. Dis. 8(9), S744–S748 (2016).
18. G. V. Papayan and A. L. Akopov, “Fluorescence diagnostics in the near-IR: apparatus, application,” J. Opt. Technol. 83(9), 536–542 (2016) [Opt. Zh. 83(9), 33–42 (2016)].
19. G. V. Papayan and A. L. Akopov, “Potentials of indocyanine green near-infrared fluorescence imaging in experimental and clinical practice,” Photodiagn. Photodyn. Ther. 24, 292–299 (2018).
20. V. I. Kochubeı˘, T. V. Kulyabina, V. V. Tuchin, and G. B. Al’tshuller, “Spectral characteristics of indocyanine green upon its interaction with biological tissues,” Opt. Spectrosc. 99(44), 560–566 (2005) [Opt. Spektrosk. 99(4), 582–588 (2005)].
21. G. V. Papayan, S. G. Chefu, N. N. Petrishchev, A. A. Il’in, and A. L. Akopov, “The possibility of using a conjugate of indocyanine green with albumin for IR fluorescence diagnosis of pathological processes in experiment,” Vopr. Onkol. (6), 839–844 (2016).
22. T. Anayama, J. Qiu, H. Chan, T. Nakajima, R. Weersink, M. Daly, J. McConnell, T. Waddell, S. Keshavjee, D. Jaffray, J. C. Irish, K. Hirohashi, H. Wada, K. Orihashi, and K. Yasufuku, “Localization of pulmonary nodules using navigation bronchoscope and a near-infrared fluorescence thoracoscope,” Ann. Thorac. Surg. 99(1), 224–230 (2015).
23. A. L. Akopov, G. V. Papayan, A. Carlson, I. V. Chistyakov, S. Yu. Dvoretsky, A. S. Agishev, S. D. Gorbunkov, and A. A. Ilyin, “Targeted biopsy of the pleura using throracoscopy under IR fluorescence monitoring,” Vestn. Khir. 176(6), 18–21 (2017).
24. A. L. Akopov, G. V. Papayan, A. N. Efimov, D. B. Nikityuk, V. O. Yaprintsev, and M. A. Magruk, “Infrared fluorescence angiography during implantation of the trachea in experiment,” Byull. Eksp. Biol. Med. 164(10), 519 (2017).
25. T. Schweiger, S. Schwarz, D. Traxler, P. Dodier, C. Aigner, G. Lang, W. Klepetko, and K. Hoetzenecker, “Bronchoscopic indocyanine green fluorescence imaging of the anastomotic perfusion after tracheal surgery,” Ann. Thorac. Surg. 10(5), 1943–1949 (2016).
26. K. Moghissi and K. Dixon, “Image-guided surgery and therapy for lung cancer: a critical review,” Future Oncol. 13(26), 2383–2394 (2017).
27. J. He, L. Yang, W. Yi, W. Fan, Y. Wen, X. Miao, and L. Xiong, “Combination of fluorescence-guided surgery with photodynamic therapy for the treatment of cancer,” Mol. Imaging 16, 1–15 (2017).
28. M. J. Landau, D. J. Gould, and K. M. Patel, “Advances in fluorescence-image guided surgery,” Ann. Transl. Med. 4(20), 1–12 (2016).
29. A. R. Khachaturyan, G. V. Papayan, and N. N. Petrishchev, “Fluorescence monitoring of photodynamic therapy of benign virus-associated diseases of the uterus,” J. Obstet. Women’s Dis. 62(5), 59–65 (2013).
30. A. A. Rusanov, G. V. Papayan, N. V. Kazakov, A. V. Gerasin, and A. L. Akopov, “New method of photodynamic theranostics of central lung cancer,” Fotodin. Ter. Fotodiagn. (Biomed. Photon.) (1), 43a–43 (2015).
31. A. A. Rusanov, G. V. Papayan, N. V. Kazakov, A. V. Gerasin, and A. L. Akopov, “Method of photodynamic therapy of central lung cancer and monitoring its effectiveness,” Russian Patent 2,576,823 (2015).
32. A. L. Akopov, A. A. Rusanov, G. V. Papayan, N. V. Kazakov, and A. V. Gerasin, “Endobronchial photodynamic therapy under fluorescence monitoring: photodynamic theranostics,” Vestn. Khir. 175(5), 26–31 (2016).
33. A. Akopov, A. Rusanov, G. Papayan, N. V. Kazakov, A. V. Gerasin, and M. A. Urtenova, “Endobronchial photodynamic therapy under fluorescence control: photodynamic theranostics,” Photodiagn. Photodyn. Ther. 19, 73–77 (2017).
34. http://www.mmcatalog.com.