DOI: 10.17586/1023-5086-2019-86-07-03-10
УДК: 551.508.769
Aerosol attenuation and backscattering of radiation in the spectral region around 1.064 μm on high-altitude paths
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Осипов В.М., Ловчий И.Л., Борисова Н.Ф. Аэрозольное ослабление и обратное рассеяние излучения в спектральной области 1,064 мкм на высотных трассах // Оптический журнал. 2019. Т. 86. № 7. С. 3–10. http://doi.org/10.17586/1023-5086-2019-86-07-03-10
Osipov V.M., Lovchiy I.L., Borisova N.F. Aerosol attenuation and backscattering of radiation in the spectral region around 1.064 μm on high-altitude paths [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 7. P. 3–10. http://doi.org/10.17586/1023-5086-2019-86-07-03-10
V. M. Osipov, I. L. Lovchiĭ, and N. F. Borisova, "Aerosol attenuation and backscattering of radiation in the spectral region around 1.064 μm on high-altitude paths," Journal of Optical Technology. 86(7), 394-400 (2019). https://doi.org/10.1364/JOT.86.000394
The characteristics of aerosol attenuation and scattering in the spectral region of 1.064 μm, which determine the efficiency of laser systems on high-altitude paths, are considered. For numerical estimates of aerosol attenuation and backscattering coefficients, currently available experimental results of satellite remote probing experiments are used. Experimental data on aerosol attenuation and scattering coefficients are compared with the results of previously performed theoretical calculations. The atmospheric factors of the lidar equation are calculated, which describe the dependence of the back-reflected laser energy on path geometry and atmospheric conditions. For a specific laser locator geometry, an estimate of the parameters of the backscattering signal on high-altitude paths is given.
aerosol attenuation, backscattering, lidar equation
OCIS codes: 010.1110, 010.1320, 010.1350, 010.3640
References:1. V. E. Zuev, V. F. Belov, L. S. Ivlev, G. M. Krekov, and R. F. Rakhimov, “Calculation of a stratified model of atmospheric aerosol for optical probing wavelengths λ = 0.6943, 1.06, 2.36, and 10 μm,” Izv. VUZOV Fiz. 11, 30–38 (1974).
2. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986).
3. G. M. Krekov and R. F. Rakhimov, Optical-Location Model of Continental Aerosol (Nauka, Siberian Branch, Novosibirsk, 1982).
4. G. M. Krekov and S. G. Zvenigorodskiı˘, Optical Model of the Middle Atmosphere (Nauka, Siberian Branch, Novosibirsk, 1990).
5. V. M. Osipov, N. F. Borisova, O. M. Galantseva, and V. V. Tsukanov, “Estimates of aerosol extinction in laser radiation transport experiments,” J. Opt. Technol. 66(11), 958 (1999) [Opt. Zh. 66(11) 39–46 (1999)].
6. S. A. Danichkin and I. V. Samokhvalov, “Equation of the optical location of extended scattering media, accounting for the lidar parameters,” in Laser Probing of the Atmosphere (Nauka, Moscow, 1976), pp. 104–110.
7. V. M. Osipov, N. F. Borisova, and N. I. Pavlov, “On the effect of clarifying the atmosphere for a quasimonochromatic radiation of a CO 2 laser,” Kvant. Elektron. 12(12), 2505–2507 (1985).
8. O. F. Prilutsky and M. N. Fomenkova, “Laser beam scattering in the atmosphere,” Sci. Global Secur. 2(1), 79–86 (1990).
9. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 Model,” Contract F1962891C0132 (PL/GPOS, Hanscom AFB, MA, 1996).
10. Ya. A. Virolaı˘nen, A. V. Polyakov, and Yu. M. Timofeev, “Statistical models of the optical properties of tropospheric aerosol,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 40(2), 255–266 (2004).
11. A. V. Polyakov, A. V. Vasil’ev, and Yu. M. Timofeev, “Parameterization of the spectral dependence of aerosol attenuation in problems of eclipsing probing of the atmosphere from space,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 37(5), 646–657 (2001).
12. A. H. Omar, D. M. Winker, C. Kittaka, M. A. Vaughan, Z. Y. Liu, Y. X. Hu, C. R. Trepte, R. R. Rogers, R. A. Ferrare, K. P. Lee, R. E. Kuehn, and C. A. Hostetler, “The CALIPSO automated aerosol classification and lidar ratio selection algorithm,” J. Atmos. Ocean. Technol. 26(10), 1994–2014 (2009).
13. S. P. Burton, R. A. Ferrare, M. A. Vaughan, H. A. Omar, R. R. Rogers, C. A. Hostetler, and J. W. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech. 6, 1397–1412 (2013).
14. H. Yu, M. Chin, D. M. Winker, A. H. Omar, Z. Liu, C. Kittaka, and T. Diehl, “Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: regional and seasonal variations,” J. Geophys. Res. 115, D00H30 (2010).
15. M. Chin, P. Ginoux, S. Kinne, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
16. http://www.philiplaven.com/mieplot.htm.
17. A. V. Polyakov, Yu. M. Timofeev, A. V. Poberovskiı˘, and A. V. Vasil’ev, “Reconstruction of the vertical profiles of the aerosol attenuation coefficients in the stratosphere according to the measurement results ofthe Ozon-MIR (DOS MIR) instruments,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 37(2), 213–222 (2001).
18. V. V. Vorob’ev, V. M. Osipov, and Yu. A. Rezunkov, “Estimates of the influence of the middle atmosphere on the propagation of a high power laser beam. 1. Model of the atmosphere, the influence of nonlinear effects on the propagation of Gaussian and super Gaussian laser beams,” Opt. Atmos. Okeana, 16(4), 688–694 (2003).
19. V. M. Orlov, I. V. Samokhvalov, G. G. Matvienko, M. L. Belov, and A. N. Kozhevnikov, Elements of the Theory of Light Scattering and Optical Location (Nauka, Novosibirsk, 1982).