DOI: 10.17586/1023-5086-2019-86-07-35-41
Large-scale optical delay line design for axial parameter measurement of the eye
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Yin Zheng, Jinsong Wang, Zuojiang Xiao, Pengfei Xu, Guolin Huang Large-scale optical delay line design for axial parameter measurement of the eye (Оптическая линия задержки с большим диапазоном для устройств измерения аксиальных характеристик глаза) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 7. С. 35–41. http://doi.org/10.17586/1023-5086-2019-86-07-35-41
Yin Zheng, Jinsong Wang, Zuojiang Xiao, Pengfei Xu, Guolin Huang Large-scale optical delay line design for axial parameter measurement of the eye (Оптическая линия задержки с большим диапазоном для устройств измерения аксиальных характеристик глаза) [in English] // Opticheskii Zhurnal. 2019. V. 86. № 7. P. 35–41. http://doi.org/10.17586/1023-5086-2019-86-07-35-41
Yin Zheng, Jinsong Wang, Zuojiang Xiao, Pengfei Xu, and Guolin Huang, "Large-scale optical delay line design for axial parameter measurement of the eye," Journal of Optical Technology. 86(7), 420-425 (2019). https://doi.org/10.1364/JOT.86.000420
The performance of an optical delay line is important for an accurate and wide-range measurement of axial parameters of a human eye, in particular in coherence tomography. In order to improve its performance, a rotating optical delay line device based on the equidifference fiber group is proposed by analyzing the optical path delay principle of the rotating mirror type delay line and the optical path multiplication principle of the equidifference fiber group. The delay distance formula is theoretically derived and a self-calibration method for optical path difference of fiber group is proposed. Finally, an experiment system was built to test and evaluate the characteristics of the delay distance, delay linearity and self-calibration repeatability for optical path difference of fiber group. The measurement results show that the maximum delay optical path is 128.094 mm, the delay linearity error is 0.17%. The repeatability is better than 0.036 mm. It can meet the requirements of human eye axial parameters for accurate and wide-range measurement.
optical delay line, optical path multiplication, delay distance, self-calibration, delay linearity
OCIS codes: 060.0060, 120.0120
References:1. Yang Q.H. The evolution trends of ocular biological parameters related with high myopia and the accuracy of axial length measurement in high myopic eyes. Chinese People’s Liberation Army Medical College, 2014.
2. Huang Z.H., Yang Z.J., Cai H.Y., et al. Optical delay line device with high speed and high stability // Laser and Optoelectronics Progress. 2017. V. 3. P. 149–156.
3. Fork R.L., Beisser F.A. Real-time intensity autocorrelation interferometer // Appl. Opt. 1978. V. 17(22). P. 3534–3535.
4. Liu B., Guo J.Y., Sun Y.Q. Modeling and control for PZT micro-displacement actuator // Optics and Precision Eng. 2013 V. 21(6). P. 1503–1509.
5. Skorobogatiy M. Linear rotary optical delay lines // Opt. Exp. 2014. V. 22(10). P. 11812.
6. Huang Z.H., Liu Y., He M.X., et al. Fast optical delay line device based on involute principle // Optics and Precision Eng. 2015. V. 23(12). P. 3289–3294.
7. Lai M. Kilohertz scanning optical delay line employing a prism array // Appl. Opt. 2001. V. 40(34). P. 6334.
8. Shiina T., Moritani Y., Ito M., et al. Long-optical-path scanning mechanism for optical coherence tomography // Appl. Opt. 2003. V. 42(19). P. 3795–3799.
9. Li Z.Y. Research of fiber optic sensor demodulation system based on compact optical path scanner. Wuhan University of Technology, 2010.
10. Zhong M. Research on fiber interference for large range absolute distence equipment. Tianjing University, 2004.
11. Zhang Y.G., Duan F.J., Zhong M, et al. Three stage measuring range multiplication technology for large range distence measurement by using optic fiber interference // J. Optoelectronics Laser. 2005. V. 16(7). P. 825–829.
12. Yu X.F. Development of optical fiber OCT imaging system and development of Doppler function imaging. Zhejiang University, 2006.
13. Li M. A low coherence on-line and absolute dispalcement measurement system with large range and high precision. Beijing Jiaotong Uinversity, 2011.
14. Povazay B., Bizheva K., Unterhuber A., et al. Submicrometer axial resolution optical coherence tomography // Opt. Lett. 2002. V. 27(20). P. 1800–1802.