DOI: 10.17586/1023-5086-2019-86-07-53-57
УДК: 681.7.068
Modification of nanoporous glass with amorphous carbon using pulsed laser radiation
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Сидоров А.И., Лебедев В.Ф., Антропова Т.В. Модификация нанопористых стекол с аморфным углеродом импульсным лазерным излучением // Оптический журнал. 2019. Т. 86. № 7. С. 53–57. http://doi.org/10.17586/1023-5086-2019-86-07-53-57
Sidorov A.I., Lebedev V.F., Antropova T.V. Modification of nanoporous glass with amorphous carbon using pulsed laser radiation [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 7. P. 53–57. http://doi.org/10.17586/1023-5086-2019-86-07-53-57
A. I. Sidorov, V. F. Lebedev, and T. V. Antropova, "Modification of nanoporous glass with amorphous carbon using pulsed laser radiation," Journal of Optical Technology. 86(7), 435-438 (2019). https://doi.org/10.1364/JOT.86.000435
It was experimentally shown that, when nanosecond near-infrared laser pulses are applied to nanoporous silicate glass containing amorphous carbon, nanodiamonds are formed. The formation of these structures is confirmed by the spectra of luminescence and Raman scattering. Mechanisms explaining the observed effects are proposed.
nanodiamond, nanoporous glass, laser radiation, spectroscopy
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation (project No. 16.1651.2017/4.6).
Nanoporous glasses were synthesized at the Institute for Silicate Chemistry, Russian Academy of Sciences, as part of the state assignment on the Program of Basic Scientific Research of the State Academies of Sciences for 2013–2020.
OCIS codes: 140.3390, 160.4236
References:1. H. X. Zhao, L. Q. Liu, Z. D. Liu, Y. Wang, X. J. Zhao, and C. Z. Huang, “Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium adjusted carbon dots,” Chem. Commun. 47, 2604–2606 (2011).
2. L. Zhou, Y. Lin, Z. Huang, J. Ren, and X. Qu, “Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg 2+ and biothiols in complex matrices,” Chem. Commun. 48, 1147–1149 (2012).
3. N. Ade, T. L. Nam, T. E. Derry, and S. H. Mhlanga, “The dose rate dependence of synthetic diamond detectors in the relative dosimetry of high-energy electron therapy beams,” Radiat. Phys. Chem. 98, 155–162 (2014).
4. B. Gorka, B. Nilsson, R. Svensson, A. Brahme, P. Ascarelli, D. M. Trucchi, G. Conte, and R. Kalish, “Design and characterization of a tissue-equivalent CVD-diamond detector for clinical dosimetry in high-energy photon beams,” Phys. Med. 24, 159–168 (2008).
5. C. Hu, C. Yu, M. Li, X. Wang, Q. Dong, G. Wang, and J. Qiu, “Nitrogen-doped carbon dots decorated on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction,” Chem. Commun. 51, 3419–3422 (2015).
6. H. Li, C. Sun, M. Ali, F. Zhou, X. Zhang, and D. R. MacFarlane, “Sulfated carbon quantum dots as efficient visible‐light switchable acid catalysts for room‐temperature ring‐opening reactions,” Angew. Chem. Int. Ed. 54, 8420–8424 (2015).
7. K. Jiang, S. Sun, L. Zhang, Y. Wang, C. Cai, and H. Lin, “Bright-yellow-emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing,” ACS Appl. Mater. Interfaces 7, 23231–23238 (2015).
8. A. M. Chizhik, S. Stein, M. O. Dekaliuk, C. Battle, W. Li, A. Huss, M. Platen, I. A. T. Schaap, I. Gregor, A. P. Demchenko, C. F. Schmidt, J. Enderlein, and A. I. Chizhik, “Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots,” Nano Lett. 16, 237–242 (2016).
9. C. M. Zhang and J. Lin, “Defect-related luminescent materials: synthesis, emission, properties and applications,” Chem. Soc. Rev. 41, 7938–7961 (2012).
10. S. Y. Lim, W. Shen, and Z. Q. Gao, “Carbon quantum dots and their applications,” Chem. Soc. Rev. 44, 362–381 (2015).
11. M. C. Ortega-Liebana, J. L. Hueso, A. Larrea, V. Sebastian, and J. Santamaria, “Feroxyhyte nanoflakes coupled to up-converting carbon nanodots: a highly active, magnetically recoverable, Fenton-like photocatalyst in the visible-NIR range,” Chem. Commun. 51, 16625–16628 (2015).
12. M. C. Ortega-Liebana, J. L. Hueso, S. Ferdousi, K. L. Yeung, and J. Santamaria, “Nitrogen-doped luminescent carbon nanodots for optimal photogeneration of hydroxyl radicals and visible-light expanded photo-catalysis,” Diamond Relat. Mater. 65, 176–182 (2016).
13. D. K. Nelson, B. S. Razbirin, A. N. Starukhin, D. A. Eurov, D. A. Kurdyukov, E. Yu. Stovpiaga, and V. G. Golubev, “Photoluminescence of carbon dots from mesoporous silica,” Opt. Mater. 59, 28–33 (2016).
14. S. Stehlik, L. Ondic, A. M. Berhane, I. Aharonovich, H. A. Girard, J.-C. Arnault, and B. Rezek, “Photoluminescence of nanodiamonds influenced by charge transfer from silicon and metal substrate,” Diamond Relat. Mater. 63, 91–96 (2016).
15. M. Y. Shalaginov, G. V. Naik, S. Ishii, M. N. Slipchenko, A. Boltasseva, J. X. Cheng, A. N. Smolyaninov, E. Kochman, and V. M. Shalaev, “Characterization of nanodiamonds for metamaterial applications,” Appl. Phys. B 105, 191–195 (2011).
16. S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, and B. Yang, “Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging,” Angew. Chem. Int. Ed. 52, 3953–3957 (2013).
17. V. V. Danilenko, “On the history of the discovery of nanodiamond synthesis,” Phys. Solid State 46, 595–599 (2004).
18. J. C. Angus, “Diamond synthesis by chemical vapor deposition: the early years,” Diamond Relat. Mater. 49, 77–86 (2014).
19. J. J. Gracio, Q. H. Fan, and J. C. Madaleno, “Diamond growth by chemical vapour deposition,” J. Phys. D: Appl. Phys. 43, 374017 (2010).
20. R. M. Sankaran and K. Giapis, “Hollow cathode sustained plasma microjets: characterization and application to diamond deposition,” J. Appl. Phys. 92, 2406–2411 (2002).
21. Z. Wu, X. Tian, G. Gui, C. Gong, S. Yang, and P. K. Chu, “Microstructure and surface properties of chromium-doped diamond-like carbon thin films fabricated by high power pulsed magnetron sputtering,” Appl. Surf. Sci. 276, 31–36 (2013).
22. G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648–661 (2007).
23. C.-H. Nee, S.-L. Yap, T.-Y. Tou, H.-C. Chang, and S.-S. Yap, “Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol,” Sci. Rep. 6, 33966 (2016).
24. A. I. Sidorov, V. F. Lebedev, A. A. Kobranova, and A. V. Nashchakin, “Formation of carbon quantum dots and nanodiamonds in laser ablation of a carbon film,” Kvant. Elektron. 48, 45–48 (2018).
25. V. A. Kreisberg and T. V. Antropova, “Changing the relation between micro- and mesoporosity in porous glasses: the effect of different factors,” Microporous Mesoporous Mater. 190, 128–138 (2014).
26. T. V. Antropova, “Technology of porous glasses and the prospects for their use for biochemical analysis,” in Research, Technology and Use of Nanoporous Drug Carriers in Medicine (KHIMIZDAT, St. Petersburg, 2015).
27. A. A. Khomich, O. S. Kudryavtsev, T. A. Dolenko, A. A. Shiryaev, A. V. Fisenko, V. I. Konov, and I. I. Vlasov, “Anomalous enhancement of nanodiamond luminescence on heating,” Laser Phys. Lett. 14, 025702 (2017).
28. S. M. Baschenko and L. S. Marchenko, “On Raman spectra of water, its structure and dependence on temperature,” Semicond. Phys., Quantum Electron. Optoelectron. 14, 77–83 (2011).
29. M. A. Khodorkovskiı˘, S. V. Murashov, T. O. Artamonova, A. L. Shahmin, A. A. Belyaev, and V. Yu. Davydov, “Fullerene films with high laser stability,” Zh. Teor. Fiz. 74, 118–123 (2004).
30. E. A. Buntov, A. F. Zatsepin, M. B. Guseva, and Yu. S. Ponosov, “2D-ordered kinked carbyne chains: DFT modeling and Raman characterization,” Carbon 117, 271–278 (2017).
31. A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Phil. Trans. R. Soc. London Ser. A 362, 2477–2512 (2004).
32. K. D. Esmeryan, C. E. Castano, A. H. Bressler, M. Abolghasemibizaki, C. P. Fergusson, A. Roberts, and R. Mohammadi, “Kinetically driven graphite-like to diamond-like carbon transformation in low temperature laminar diffusion flames,” Diamond Relat. Mater. 75, 58–68 (2017).
33. V. I. Egorov, I. V. Zvyagin, D. A. Klyukin, and A. I. Sidorov, “The formation of silver nanoparticles on the surface of silver-containing glasses when they are irradiated with nanosecond laser pulses,” J. Opt. Technol. 81(5), 270–274 (2014) [Opt. Zh. 81(5), 54–60 (2014)].