DOI: 10.17586/1023-5086-2019-86-07-58-66
УДК: 681.7.068
Fiber-optic assemblies based on polycrystalline lightguides for the mid-IR
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Корсакова Е.А., Львов А.Е., Кашуба И.А., Корсаков В.С., Салимгареев Д.Д., Корсаков А.С., Жукова Л.В. Волоконно-оптические сборки на основе поликристаллических световодов для среднего инфракрасного диапазона // Оптический журнал. 2019. Т. 86. № 7. С. 58–66. http://doi.org/10.17586/1023-5086-2019-86-07-58-66
Korsakova E.A., Lvov A.E., Kashuba I.A., Korsakov V.S., Salimgareev D.D., Korsakov A.S., Zhukova L.V. Fiber-optic assemblies based on polycrystalline lightguides for the mid-IR [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 7. P. 58–66. http://doi.org/10.17586/1023-5086-2019-86-07-58-66
E. A. Korsakova, A. E. L’vov, I. A. Kashuba, V. S. Korsakov, D. D. Salimgareev, A. S. Korsakov, and L. V. Zhukova, "Fiber-optic assemblies based on polycrystalline lightguides for the mid-IR," Journal of Optical Technology. 86(7), 439-445 (2019). https://doi.org/10.1364/JOT.86.000439
High-resolution fiber-optic assemblies based on modified silver halide lightguides that operate in the spectral region from 2 to 25 μm have been developed and investigated. Two nontrivial methods of fabricating polycrystalline fiber assemblies for the mid-IR are proposed and implemented. One of them was used to produce fiber assemblies from silver halide lightguides with the unprecedentedly low diameter of 110 μm. The functional properties of the resulting fiber assemblies are studied: the transmission range, optical losses, cross-talk, spatial resolution, and the effect of heating. The resulting data make it possible to consider using such fiber assemblies in IR thermography, spectroscopy, and microscopy.
silver halide, fiber assemblies, polycrystalline infrared lightguides, mid-IR, IR thermography
Acknowledgements:The research was supported by the Russian Science Foundation (project No. 18-73-10063).
OCIS codes: 060.2280, 060.2310
References:1. S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for long-wave infrared imaging,” Opt. Express 25(21), 26160–26164 (2017).
2. J. Zhang, S. Yoshikado, and T. Aruga, “Shift multiplexing for holographic storage system using fiber bundle referencing,” Appl. Phys. Lett. 82, 25–27 (2003).
3. Y. Matsuura and K. Naito, “Flexible hollow optical fiber bundle for infrared thermal imaging,” Biomed. Opt. Express 2(1), 65–70 (2011).
4. V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollowcore waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
5. Y. Lavi, A. Millo, and A. Katzir, “Flexible ordered bundles of infrared transmitting silver-halide fibers: design, fabrication, and optical measurements,” Appl. Opt 45(23), 5808–5814 (2006).
6. Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared-transmitting silver halide fibers,” Appl. Phys. Lett. 87, 241122 (2005).
7. I. Paiss and A. Katzir, “Thermal imaging by ordered bundles of silver halide crystalline fibers,” Appl. Phys. Lett. 61, 1384–1386 (1992).
8. E. Rave and A. Katzir, “Ordered bundles of infrared transmitting silver halide fibers: attenuation, resolution, and crosstalk in long and flexible bundles,” Opt. Eng. 41(7), 1467–1468 (2002).
9. E. Rave, L. Nagli, and A. Katzir, “Ordered bundles of infrared-transmitting AgClBr fibers: optical characterization of individual fibers,” Opt. Lett. 25(17), 1237–1239 (2000).
10. E. Rave, D. Shemesh, and A. Katzir, “Thermal imaging through ordered bundles of infrared-transmitting silver-halide fibers,” Appl. Phys. Lett. 76(14), 1795–1797 (2000).
11. I. Gannot, A. Goren, E. Rave, A. Katzir, V. Gopal, G. Revezin, and J. Harrington, “Thermal imaging through infrared fiber/waveguides bundles,” Proc. SPIE 5317, 94–100 (2004).
12. I. Paiss, F. Moser, and A. Katzir, “Properties of silver halide core-clad fibers and the use of fiber bundle for thermal imaging,” Fiber Integr. Opt. 10, 275–290 (1991).
13. A. Korsakov, L. Zhukova, E. Korsakova, and E. Zharikov, “Structure modeling and growing AgCl xBr1−x, Ag1−xTlxBr1−xIx, and Ag1−xTlxClyIzBr1−y−z crystals for infrared fiber optics,” J. Crystal Growth 386, 94–99 (2014).
14. L. V. Zhukova, N. V. Primerov, A. S. Korsakov, and A. I. Chazov, “AgCl xBr 1−x and AgCl xBr yI 1−x−y crystals for IR engineering and optical fiber cables,” Inorg. Mater. 44, 1372–1377 (2008).
15. A. S. Korsakov, L. V. Zhukova, E. A. Korsakova, V. V. Zhukov, and V. S. Korsakov, “Thermodynamic research of the crystals of AgBr-TlI system and obtaining of infrared light conductors with nanocrystallic structure, based on these crystals,” Tsvetn. Met. 4, 62–66 (2013).
16. A. S. Korsakov, L. V. Zhukova, V. S. Korsakov, D. S. Vrublevsky, and D. D. Salimgareev, “Research of phase equilibriums and modeling of structure of AgBr-TlBr0.46 I 0.54 system,” Tsvetn. Met. 8, 50–54 (2014).
17. L. V. Zhukova, A. E. Lvov, A. S. Korsakov, D. D. Salimgareev, and V. S. Korsakov, “Domestic developments of IR optical materials based on solid solutions of silver halogenides and monovalent thallium,” Opt. Spectrosc. 125, 933–943 (2018).
18. A. S. Korsakov, “Structure of photon–crystalline lightguides based on modified silver halide crystals and a study of their functional properties,” Doctoral dissertation (GOI im. S.I. Vavilova, Ekaterinburg, 2018).
19. V. S. Korsakov, “Synthesizing crystals of the AgBr–Tll system: structure, properties, application,” Candidate’s dissertation (UrFU im. pervogo B. Prezidenta N. El’tsina, Ekaterinburg, 2018).
20. A. S. Korsakov, D. S. Vrublevsky, A. E. Lvov, and L. V. Zhukova, “Refractive index dispersion of AgCl 1−xBr x (0 ≤ x ≤ 1) and Ag1−xTl xBr 1−xI x (0 ≤ x ≤ 0.05),” Opt. Mater. 64, 40–46 (2017).
21. V. Artyushenko, C. Wojciechowski, J. Ingram, V. Kononenko, V. Lobachev, T. Sakharova, J. Ludczak, A. Grzebieniak, and Z. Wojciechowski, “Specialty fibers for broad spectra of wavelength and power,” Proc. SPIE 5951, 595103 (2005).
22. L. V. Zhukova, A. S. Korsakov, and D. S. Vrublevski, Materials of Micro- and Optoelectronics: Crystals and Lightguides (Izd. Yurat, Moscow, 2018).
23. T. Katsuyama and Kh. Matsumura, Infrared Fiber Lightguides (Mir, Moscow, 1992).
24. A. Korsakov, D. Vrublevsky, V. Korsakov, and L. Zhukova, “Investigating the optical properties of polycrystalline AgCl 1−xBr x (0 ≤ x ≤ 1) and Ag0.95 Tl 0.05Br 0.95I 0.05 for IR engineering,” Appl. Opt 54(26), 8004–8009 (2015).
25. A. Korsakov, D. Salimgareev, A. Lvov, and L. Zhukova, “IR spectroscopic determination of the refractive index of Ag 1−xTl xBr 1−0.54x I0.54x (0 ≤ x ≤ 0.05) crystals,” Opt. Laser Technol. 93, 18–23 (2017).
26. E. Korsakova, A. Lvov, D. Salimgareev, A. Korsakov, S. Markham, A. Mani, S. Silien, T. A. M. Syed, and L. Zhukova, “Stability of MIR transmittance of silver and thallium halide optical fibers in ionizing β and γ radiation from nuclear reactors,” Infrared Phys. Technol. 93, 171–177 (2018).
27. D. D. Salimgareev, A. E. Lvov, E. A. Korsakova, A. S. Korsakov, and L. V. Zhukova, “Optical fibers based on modified silver halide crystals for nuclear power,” in ASRTU Conference on Alternative Energy: Materials, Technologies, and Devices (2018), pp. 217–222.
28. S. A. M. Tofail, M. Aladin, J. Bauer, and S. Christophe, “In situ, realtime infrared (IR) imaging for metrology in advanced manufacturing,” Adv. Eng. Mater. 20, 1800061 (2018).
29. E. A. Korsakova, A. S. Korsakov, V. S. Korsakov, and L. V. Zhukova, “IR thermographic system supplied with an ordered fiber bundle for investigation of power engineering equipment and units,” in ASRTU Conference on Alternative Energy: Materials, Technologies, and Devices (2018), pp. 209–216.
30. A. Dayan, A. Goren, and I. Gannot, “Theoretical and experimental investigation of the thermal effects within body cavities during transendoscopical CO 2 laser-based surgery,” Lasers Surg. Med. 35, 18–27 (2004).
31. E. A. Korsakova, L. V. Zhukova, A. S. Korsakov, A. S. Shmygalev, and M. S. Korsakov, “Thermal imaging by means of IR-fiber bundle for medical applications,” in 18th International Conferance on Laser Optics, St. Petersburg, Russia., 2018, p. 529.
32. D. A. Kennedy, T. Lee, and D. Seely, “A comparative review of thermography as a breast cancer screening technique,” Integr. Cancer Ther. 8(1), 9–16 (2009).