ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-07-67-73

УДК: 535.376

Statistical luminescence method for determining the region of origin of emeralds

For Russian citation (Opticheskii Zhurnal):

Соломонов В.И., Спирина А.В., Попов М.П., Иванов М.А., Липчак А.И. Статистический люминесцентный метод определения региона происхождения изумрудов // Оптический журнал. 2019. Т. 86. № 7. С. 67–73. http://doi.org/10.17586/1023-5086-2019-86-07-67-73

 

Solomonov V.I., Spirina A.V., Popov M.P., Ivanov M.A., Lipchak A.I. Statistical luminescence method for determining the region of origin of emeralds [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 7. P. 67–73. http://doi.org/10.17586/1023-5086-2019-86-07-67-73

For citation (Journal of Optical Technology):

V. I. Solomonov, A. V. Spirina, M. P. Popov, M. A. Ivanov, and A. I. Lipchak, "Statistical luminescence method for determining the region of origin of emeralds," Journal of Optical Technology. 86(7), 446-451 (2019). https://doi.org/10.1364/JOT.86.000446

Abstract:

Large samples of emeralds from eight deposits in Brazil, China, Zambia, Russia, Afghanistan, Colombia, and Tanzania were studied using pulsed cathodoluminescence to develop a nondestructive method for determining their region of origin. The average wavelength, variance, and inverse effective width of the luminescence band in the 660–870 nm wavelength range of these minerals followed normal distributions with intensities characteristic of each of the regions of origin. Based on this result, a statistical luminescence method for determining the region of origin of the minerals was proposed and tested. This method uniquely determined the region of origin for more than 80% of the emeralds.

Keywords:

emerald, region of origin, pulsed cathodoluminescence, density function, confidence probability

OCIS codes: 260.3800, 300.6280

References:

1. D. A. Banks, G. Giuliani, B. W. D. Yardley, and A. Cheilletz, “Emerald mineralization in Colombia: fluid chemistry and the role of brine mixing,” Miner. Deposita 35, 699–713 (2000).
2. G. W. Bowersox and J. Anwar, “The Gujar Killi emerald deposit, north-west frontier province, Pakistan,” Gems Gemol. 25, 16–24 (1989).
3. M. P. Popov, Geological and Mineralogical Features of Rare-Metal Mineralization in the Eastern Exocontact of the Aduı˘sk Massif within the Ural Emerald Strip (UGGU, Ekaterinburg, 2014).
4. V. I. Solomonov, A. V. Spirina, M. P. Popov, and O. A. Kaı˘gorodova, “Luminescence properties of precious beryl deposits,” J. Opt. Technol. 83(8), 494–497 (2016) [Opt. Zh. 83(8), 494–62 (2016)].
5. A. N. Tarashchan, Luminescence of Minerals (Naukova Dumka, Kiev, 1978).
6. A. N. Platonov, M. N. Taran, E. V. Polshin, and O. E. Minko, “On the nature of the coloration of iron-containing beryls,” Izv. Akad. Nauk. SSSR Ser. Geol. 10, 54–68 (1979).
7. A. N. Platonov and A. N. Tarashchan, “Optical spectroscopy of vanadium in natural minerals: absorption spectra of the V4+ and V3+ complexes,” Konst. Svoı˘stva Miner. 7, 75–81 (1973).
8. O. N. Lopatin, R. I. Khaı˘bullin, and A. G. Nikolaev, “Implantation of vanadium ions in the crystal structure of natural beryl,” Izv. Vyssh. Uchebn. Zaved. Geol. Razved. 6, 12–16 (2010).