DOI: 10.17586/1023-5086-2019-86-08-05-13
УДК: 535.015
How to determine the wave aberrations of an optical system from the intensity distribution of the focused beam
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Сиразетдинов В.С., Дмитриев И.Ю., Линский П.М., Никитин Н.В. Метод определения волновых аберраций оптической системы по распределению интенсивности фокусируемого пучка // Оптический журнал. 2019. Т. 86. № 8. С. 5–13. http://doi.org/10.17586/1023-5086-2019-86-08-05-13
Sirazetdinov V.S., Dmitriev I.Yu., Linskiy P.M., Nikitin N.V. How to determine the wave aberrations of an optical system from the intensity distribution of the focused beam [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 8. P. 5–13. http://doi.org/10.17586/1023-5086-2019-86-08-05-13
V. S. Sirazetdinov, I. Yu. Dmitriev, P. M. Linskiĭ, and N. V. Nikitin, "How to determine the wave aberrations of an optical system from the intensity distribution of the focused beam," Journal of Optical Technology. 86(8), 458-465 (2019). https://doi.org/10.1364/JOT.86.000458
This paper presents a method for determining the wave aberrations of an optical system from a relationship that connects the aberrations with the intensity distribution in the image of the beam outside its focusing region. Numerical simulation modeling of the method and experimental studies of the characteristics of a light beam focused by a multicomponent objective showed that the third- and higher-order wave aberrations inherent to the objective can be determined to within λ/20.
wave aberrations, optical system, light beam, intensity distribution
OCIS codes: 120.0120, 220.0220
References:1. M. M. Rusinov, Technical Optics (Mashinostroenie, Leningrad, 1979).
2. V. A. Zverev and T. V. Tochilina, Principles of Optical Engineering (SPbGU ITMO, St. Petersburg, 2005).
3. V. P. Lukin, Adaptive Formation of Beams and Images in the Atmosphere (Izd. SO RAN, Novosibirsk, 1999).
4. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27(7), 1223–1225 (1988).
5. C. Roddier and F. Roddier, “Wave-front reconstruction from defocused images and testing of ground-based optical telescopes,” J. Opt. Soc. Am. A 10(11), 2277–2287 (1993).
6. V. S. Sirazetdinov, I. Yu. Dmitriev, P. M. Linskiı˘, and N. V. Nikitin, “Method of determining the wave aberrations of an optical system,” Russian Patent No. 2,680,657 (2019).
7. V. I. Tatarskiı˘, The Propagation of Waves in a Turbulent Atmosphere (Nauka, Moscow, 1979).
8. Yu. A. Kravtsov and Yu. I. Orlov, “Limits of applicability of the method of geometric optics and related problems,” Sov. Phys. Usp. 23(11), 750–762 (1980) [Usp. Fiz. Nauk 132(3), 475–496 (1980)].
9. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1962).