DOI: 10.17586/1023-5086-2019-86-08-83-89
УДК: 621.396.963, 621.373.826
Ultrafast scanning of space with pulsed chirped laser radiation
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Малинов В.А., Павлов Н.И., Чарухчев А.В. Cверхбыстрое сканирование пространства импульсным чирпированным лазерным излучением // Оптический журнал. 2019. Т. 86. № 8. С. 83–89. http://doi.org/10.17586/1023-5086-2019-86-08-83-89
Malinov V.A., Pavlov N.I., Charukhchev A.V. Ultrafast scanning of space with pulsed chirped laser radiation [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 8. P. 83–89. http://doi.org/10.17586/1023-5086-2019-86-08-83-89
V. A. Malinov, N. I. Pavlov, and A. V. Charukhchev, "Ultrafast scanning of space with pulsed chirped laser radiation," Journal of Optical Technology. 86(8), 527-532 (2019). https://doi.org/10.1364/JOT.86.000527
This paper reports ultrafast scanning of space using monopulse chirped laser radiation when the temporal-frequency modulation of the initial pulse is transformed by means of a dispersion device into a spatial frequency scan along one of the spatial coordinates. An experimental setup and system for recording the radiation spectra incident on and reflected from the detected objects are described. Using a cylindrical lens, a radiation field was formed in a 5′×8.6′ solid angle, and the possibility of ultrafast scanning of space at this angle, as defined using a chirped pulse width of 300 ps, was demonstrated. It is shown that the direction-finding response is linear when space is scanned. A layout of an optical radar system with two beams of pulsed chirped laser radiation aligned in space is considered. The use of the proposed ranging method for the detection of space debris is discussed.
monopulse chirped laser radiation, radiation spectra, detected object, space debris
OCIS codes: 140.0140, 350.0350
References:1. V. P. Vasil’ev, “The current state of high-precision laser ranging,” Usp. Fiz. Nauk 188(7), 790–797 (2018).
2. L. A. Asnis, V. P. Vasil’ev, and V. B. Volkonskiı˘, Laser Ranging, V. P. Vasil’ev and Kh. V. Khinrikus, eds. (Radio i Svyaz’, Moscow, 1996).
3. M. F. Borisov, M. F. Danilov, A. A. Maksimov, N. G. Motylev, N. I. Pavlov, A. Ya. Prilipko, S. V. Telyatnikov, and A. L. Chilipenko, “Optical radar system with a circular search zone: an actuator-control algorithm and how to implement it,” J. Opt. Technol. 76(9), 563–567 (2009) [Opt. Zh. 76(9), 49–55 (2009)].
4. V. A. Malinov, V. Yu. Matveev, N. V. Nikitin, N. I. Pavlov, A. V. Charukhchev, and V. N. Chernov, “Superfast scanning of space withphase-modulated laser radiation,” J. Opt. Technol. 68(10), 755–757 (2001) [Opt. Zh. 68(10), 37–40 (2001)].
5. V. G. Borodin, V. M. Komarov, V. A. Malinov, V. M. Miguel, N. V. Nikitin, V. S. Popov, S. L. Potapov, A. V. Charukhchev, and V. N. Chernov, “‘Progress-P’ laser facility with chirped-pulse amplification in neodymium glass,” Quantum Electron. 29(11), 939–943 (1999) [Kvant. Elektron. 29(11), 101–105 (1999)].
6. V. Yu. Matveev and N. I. Pavlov, “A method for detecting objects and determining their location and device for its implementation,” Russian patent 2224267 (2004).
7. G. H. Kim, J. Yang, B. Lee, J. W. Kim, D. C. Heo, S. A. Chizhov, E. G. Sall’, and V. E. Yashin, “High-power repetitively pulsed ytterbium lasers with supershort pulse width and direct diode pumping for technological and biomedical applications,” J. Opt. Technol. 85(11), 679–686 (2018) [Opt. Zh. 85(11), 29–38 (2018)].
8. L. I. Kuznetsov and V. N. Yarygin, “Laser-reactive method for disposal of small space debris,” Quantum Electron. 24(6), 555–557 (1994) [Kvant. Elektron. 21(6), 600–602 (1994).
9. V. A. Smirnov, N. V. Vysotina, and N. N. Rozanov, “On the mechanism of the formation of ‘light’ bullets in the air,” Opt. Spektrosk. 83(5), 818–819 (1997).
10. A. V. Avdeev, A. S. Bashkin, B. I. Katorgin, and M. V. Parfen’ev, “About possibilities of clearing near-Earth space from dangerous debris by a spaceborne laser system with an autonomous cw chemical HF laser,” Quantum Electron. 41(7), 669–674 (2011) [Kvant. Elektron. 41(7), 669–674 (2011)].