DOI: 10.17586/1023-5086-2019-86-09-03-10
УДК: 535.015
Combined effect of an IR optical system’s design and process parameters on the background irradiation on the detector
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Правдивцев А.В. Исследование комплексного влияния конструктивных и технологических параметров оптической системы для инфракрасной области спектра на фоновую облученность на приемнике // Оптический журнал. 2019. Т. 86. № 9. С. 3–10. http://doi.org/10.17586/1023-5086-2019-86-09-03-10
Pravdivtsev A.V. Combined effect of an IR optical system’s design and process parameters on the background irradiation on the detector [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 9. P. 3–10. http://doi.org/10.17586/1023-5086-2019-86-09-03-10
A. V. Pravdivtsev, "Combined effect of an IR optical system’s design and process parameters on the background irradiation on the detector," Journal of Optical Technology. 86(9), 533-538 (2019). https://doi.org/10.1364/JOT.86.000533
This paper discusses how an IR optical system’s design and process parameters affect the background irradiance on an IR radiation detector. Nonsequential ray tracing is used to calculate the background irradiance on the photodetector. The method was used for multivariate analysis of a system in order to determine the parameter set that minimizes the level of external and internal background fluxes on the detector. The optical properties of the components of the objective and the design characteristics of the mounts, along with the temperature of the individual components of the system, served as optimization parameters. The optimum parameter sets are determined that minimize the background flux under various utilization conditions of the system.
infrared optical systems, background flux, construction optimization
OCIS codes: 220.4830, 110.3080
References:1. A. V. Makarenko, A. V. Pravdivtsev, and A. N. Yudin, “Method of estimating the internal stray radiation of the optical channels of IR systems,” Elektromagn. Volny Sis. (12), 28–37 (2009).
2. A. V. Pravdivtsev and M. N. Akram, “Simulation and assessment of stray light effects in infrared cameras using non-sequential ray tracing,” Infrared Phys. Technol. 60, 306–311 (2013).
3. A. V. Pravdivtsev, “Analyzing how the design of the mounts affects the thermal radiation of optical systems,” in Collection of the Reports of the International Conference on Applied Optics, St. Petersburg, 2012, pp. 230–234.
4. A. V. Makarenko and A. V. Pravdivtsev, “Analyzing how the surface properties of mounts affects the thermal radiation of optical systems,” in Collection of the Reports of the International Conference on Applied Optics, St. Petersburg, 2010, pp. 208–212.
5. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design (McGraw-Hill, Bellingham, WA, 2008).
6. B. I. Golub’, I. I. Pakhomov, and A. M. Khorokhorov, The Intrinsic Radiation of the Components of Optical Systems of Optoelectronic Devices (Mashinostroenie, Moscow, 1978).
7. I. S. Gaı˘nutdinov, N. Yu. Shuvalov, R. S. Sabirov, V. A. Ivanov, R. R. Gareev, and N. G. Mirkhanov, “Antireflection coatings on germanium and silicon substrates in the 3–5-μm and 8–12-μm windows of IR transparency,” J. Opt. Technol. 76(5), 302–305 (2009) [Opt. Zh. 76(5), 68–72 (2009)].
8. O. P. Kuznechik and M. P. Zakharich, “Statistical characteristics of the sky’s brightness in the 0.5–12-μm region,” Dep. VINITI No. 2495 on March 14, 1980.
9. G. J. Zissis, ed., The Infrared and Electro-optical Systems Handbook, vol. 1, Sources of Radiation (SPIE, Bellingham, Washington, 1993). 10. S. P. Mahulikar, S. K. Potnuru, and G. A. Rao, “Study of sunshine, skyshine, and earthshine for aircraft infrared detection,” J. Opt. A: Pure Appl. Opt. 11, 045703 (2009).
11. K. A. Snail, D. P. Brown, and J. P. Costantino, “Optical characterization of black appliqués,” Proc. SPIE 2864, 465–474 (1996).
12. J. L. Miller, “Multispectral infrared bidirectional reflectance distribution function forward-scatter measurements of common infrared black surface preparations and materials,” Opt. Eng. 45, 056401 (2006).
13. G. N. Popov, P. G. Golubev, and N. N. Mordvin, “The possibility of detecting and suppressing optoelectronic media,” Prikl. Fiz. (2), 124–127 (2007).