ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-09-68-73

УДК: 681.7.064.453

Stability analysis of a nonpolarizing interference system to a varying angle of incidence of radiation during operation

For Russian citation (Opticheskii Zhurnal):

Фам В.Х., Нго Т.Ф., Губанова Л.А. Анализ устойчивости неполяризующей интерференционной системы к изменению угла падения излучения в эксплуатации // Оптический журнал. 2019. Т. 86. № 9. С. 68–73. http://doi.org/10.17586/1023-5086-2019-86-09-68-73

 

Pham V.Kh., Ngo T.P., Gubanova L.A. Stability analysis of a nonpolarizing interference system to a varying angle of incidence of radiation during operation [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 9. P. 68–73. http://doi.org/10.17586/1023-5086-2019-86-09-68-73

For citation (Journal of Optical Technology):

V. Kh. Pham, T. P. Ngo, and L. A. Gubanova, "Stability analysis of a nonpolarizing interference system to a varying angle of incidence of radiation during operation," Journal of Optical Technology. 86(9), 587-591 (2019). https://doi.org/10.1364/JOT.86.000587

Abstract:

In this work, the influence of deviations of the angle of incidence of radiation on the spectral characteristics of the reflectance of a nonpolarizing interference system is analyzed. A technique is presented for determining the deviation of the reflection coefficient of the interference system considered here from the calculated value in the presence of a deviation of the angle of incidence of radiation. A stability assessment of the coating structure under consideration with varying angles of incidence of radiation is carried out.

Keywords:

nonpolarizing interference systems, spectral characteristics, standard deviation

Acknowledgements:
The research was supported by the Ministry of Education and Science of the Russian Federation (project No. 16.1651.2017/4.6).

OCIS codes: 310.0310, 310.1620

References:

1. M. T. Runyon, C. H. Nacke, A. Sit, M. Granados-Baez, L. Giner, and J. S. Lundeen, “Implementation of nearly arbitrary spatially varying polarization transformations: an in-principle lossless approach using spatial light modulators,” Appl. Opt. 57(20), 5769–5778 (2018).
2. A. H. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010).
3. Y. Lou, L. Yan, B. Chen, and S. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25(6), 6805–6821 (2017).
4. Y. Niwa, K. Arai, A. Ueda, M. Sakagami, N. Gouda, Y. Kobayashi, Y. Yamada, and T. Yano, “Long-term stabilization of a heterodyne metrology interferometer down to a noise level of 20 pm over an hour,” Appl. Opt. 48(32), 6105–6110 (2009).
5. W. Wang, S. Xiong, and Y. Zhang, “Design and analysis of all-dielectric broadband nonpolarizing parallel-plate beamsplitters,” Appl. Opt. 46(16), 3185–3191 (2007).
6. H. Qi, R. Hong, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing and polarizing filter design,” Appl. Opt. 44(12), 2343–2348 (2005).
7. H. S. Jin, Y. G. Chun, and P. W. Zheng, “Design and analysis of metal-dielectric nonpolarizing beamsplitters in a glass cube,” Appl. Opt. 48(18), 3385–3390 (2009).
8. J. H. Shi and Z. P. Wang, “Theoretical analysis of two nonpolarizing beamsplitters in asymmetrical glass cubes,” Appl. Opt. 47(13), C275–C278 (2008).
9. J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beamsplitters,” Appl. Opt. 38(7), 1244–1250 (1999).
10. A. H. Al-Hamdani, H. G. Rashid, and H. T. Hashim, “Design and evaluation of immersed wideband non-polarizing beam splitter using ZEMAX program and needle/tunneling method,” Int. J. Sci. Eng. Res. 7(8), 879–884 (2016).
11. T. P. Ngo, V. K. Pham, and L. A. Gubanova, “Determination of the layer included in an interference coating that maximally influences correspondence of the spectral reflectance curve of the fabricated coating to the synthesized coating reflectance,” J. Opt. Technol. 85(3), 182–185 (2018) [Opt. Zh. 85(3), 72–76 (2018)].
12. P. T. Ngo, L. A. Gubanova, and V. K. Pham, “Enhancing the resistance of spectral characteristics of interference coatings to deviation in parameters of layers entering into their composition,” Opt. Spectrosc. 125(2), 300–304 (2018) [Opt. Spektrosk. 125(2), 284–288 (2018)].
13. E. N. Kotlikov, G. A. Varfolomeev, N. P. Lavrovskaya, A. N. Tropin, and E. V. Khonineva, Design, Manufacture and Study of Interference Coatings (GUAP, St. Petersburg, 2009).
14. É. S. Putilin and L. A. Gubanova, Optical Coatings (LAN’ Publishing, St. Petersburg, 2016).