ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-09-78-86

УДК: 681.2-2, 681.7.034, 621.794.4, 533.924, 621.7-4

Influence of the skin effect on the structure of relief–phase optical elements obtained by plasma–chemical etching

For Russian citation (Opticheskii Zhurnal):

Одиноков С.Б., Сагателян Г.Р., Ковалев М.С., Бугорков К.Н. Влияние скин-эффекта на структуру рельефно-фазовых оптических элементов, получаемых методом плазмохимического травления // Оптический журнал. 2019. Т. 86. № 9. С. 78–86. http://doi.org/10.17586/1023-5086-2019-86-09-78-86

 

Odinokov S.B., Sagatelyan G.R., Kovalev M.S., Bugorkov K.N. Influence of the skin effect on the structure of relief–phase optical elements obtained by plasma–chemical etching [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 9. P. 78–86. http://doi.org/10.17586/1023-5086-2019-86-09-78-86

For citation (Journal of Optical Technology):

S. B. Odinokov, G. R. Sagatelyan, M. S. Kovalev, and K. N. Bugorkov, "Influence of the skin effect on the structure of relief–phase optical elements obtained by plasma–chemical etching," Journal of Optical Technology. 86(9), 596-602 (2019). https://doi.org/10.1364/JOT.86.000596

Abstract:

This paper discusses features of the phenomena that occur when optical glass is plasma–chemically etched on an apparatus with inductively coupled plasma during the fabrication of relief-phase optical elements, resulting in nonuniform damage of the metallic (chromium) mask. It is shown that, in fabricating such elements, which are characterized by very significant width variations of sections of the metallic mask, it is necessary to allow for the density nonuniformity of the eddy currents induced in the mask (a thin-film conductor) caused by the use of a high-frequency discharge. It is analytically shown that the nonuniformity of the damage of the mask–conductor is caused by the skin effect; as a consequence of heating nonuniformity, this causes the adsorption and desorption processes of chemically active particles to be dissimilar along the contour and in the middle of the mask. Diagrams of the amplitude distribution of the induced electric field transverse to the field vector are obtained that show that, although the consequences of the skin effect do not exceed 2% on relatively narrow sections of the mask (1–2 μm wide), the skin effect on relatively wide sections (10–20 μm wide) causes a difference in the conditions of the chemical reactions on the edge sections of the mask and in their middle by about a factor of 5.

Keywords:

diffraction optical elements, plasma–chemical etching, mask, chromium, skin effect, chemical absorption, desorption

Acknowledgements:
The research was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 3.2236.2017/4.6).

OCIS codes: 160.2750, 220.4000, 240.6700

References:

1. V. A. Soı˘fer, V. V. Kotlyar, and L. L. Doskolovich, “Diffraction optical elements in nanophotonics devices,” Komp. Opt. 33(4), 352–368 (2009).
2. V. A. Soifer, ed., Methods for Computer Design of Diffractive Optical Elements (Wiley, New York, 2002).
3. S. B. Odinokov, G. R. Sagatelyan, and M. S. Kovalev, Calculation, Design, and Fabrication of Diffraction and Holographic Optical Elements (Izd. MGTU im. N.É. Baumana, Moscow, 2014), pp. 42–59.
4. S. B. Odinokov, G. R. Sagatelyan, M. S. Kovalev, and K. N. Bugorkov, “Features of the plasma–chemical etching of quartz glass during the formation of deep surface relief on high-precision components of devices,” J. Opt. Technol. 86(5), 317–322 (2019) [Opt. Zh. 86(5), 70–77 (2019)].
5. S. B. Odinokov, G. R. Sagatelyan, M. S. Kovalyov, A. B. Solomashenko, and E. A. Drozdova, “Creation of DOE to form the calibration dot patterns inside the optical systems,” Comp. Opt. 37(3), 341–351 (2013).
6. S. P. Timoshenkova, ed., Plasma Etching Processes in Micro- and Nanotechnologies (BINOM Laboratoriya Znaniı˘, Moscow, 2013).
7. W. T. Li, D. A. P. Bulla, J. Love, B. Luther-Davies, C. Charles, and R. Boswell, “Deep dry-etch of silica in a helicon plasma etcher for optical waveguide fabrication,” J. Vac. Sci. Technol. A 23(1), 146–150 (2005).
8. A. I. Vinogradov, N. M. Zaryankin, E. P. Prokopev, S. P. Timoshenkov, and Yu. A. Mikkhailov, “The optimization of parameters of deep plasma chemical etching of silicon for the elements of microelectro-mechanic systems,” Russ. Microelectron. 40(7), 441–445 (2011).
9. V. V. Podlipnov, V. A. Kolpakov, and N. L. Kazanskiı˘, “Study of the etching of silicon dioxide in an off-electrode plasma using a chromium mask,” Komp. Opt. 40(6), 830–836 (2016).
10. Frast-M, “Liquid etching of chromium,” http://frast.ru/travlcr.html.
11. D. Yu. Kruchinin and E. P. Farafontova, Photolithographic Technologies in the Production of Optical Components (Izd. Ural. Univ., Ekaterinburg, 2014).
12. A. V. Volkov, O. Yu. Moiseev, S. D. Poletaev, and I. V. Chistyakov, “Using thin molybdenum films for contact masks when fabricating microrelief of diffraction-optics elements,” Komp. Opt. 38(4), 757–762 (2014).
13. A. V. Volkov, B. O. Volodkin, S. V. Dmitriev, V. A. Eropolov, O. Yu. Moiseev, and V. S. Pavel’ev, “Thin-film copper as a masking layer in the process of plasma–chemical etching of quartz,” Komp. Opt. 31(4), 53–55 (2007).
14. A. N. Noemaun, F. W. Mont, J. Cho, E. F. Schubert, G. B. Kim, and Ch. Sone, “Inductively coupled plasma etching of graded-refractive-index layers of TiO 2 and SiO 2 using an ITO hard mask,” J. Vac. Sci. Technol. A 29(5), 051302 (2011).
15. R. Knizikevicius, “Simulations of Si and SiO 2 etching in SF 6 + O 2 plasma,” Acta Phys. Pol. A 117(3), 478–483 (2010).
16. G. Kokkoris, E. Gogolides, and A. G. Boudouvis, “Etching of SiO 2 features in fluorocarbon plasmas: explanation and prediction of gas-phase-composition effects on aspect ratio dependent phenomena in trenches,” J. Appl. Phys. 91(5), 2697–2707 (2002).
17. F. H. Herbstein, M. Kapon, and G. M. Reisner, “Crystal structures of chromium(III) fluoride trihydrate and chromium(III) fluoride pentahydrate. Structural chemistry of hydrated transition metal fluorides. Thermal decomposition of chromium(III) fluoride nonhydrate,” Z. Kristallogr. 171(1–4), 209–224 (1985).
18. K. N. Bugorkov and G. R. Sagatelyan, “Possibilities of plasma–chemical etching of glass using a diode circuit,” Mashinostr. Komp. Tekhnol. (11), 44–63 (2017).
19. S. V. Dudin, A. V. Zykov, A. N. Dahov, and V. I. Farenik, “Experimental research of ICP reactor for plasma–chemical etching,” Probl. At. Sci. Technol. Ser.: Plasma Phys. 12(6), 189–191 (2006).
20. A. V. Volkov, “Study of the Processing Regimes of Plasma Ion–Chemical Etching on the Caroline PE15 Apparatus” (Samara State Aerospace Univ. (National Research Univ.), Samara, 2013).
21. S. S. Stafeev, A. G. Nalimov, L. O’Faoleı˘n, and M. V. Kotlyar, “Binary diffraction gratings to control the polarization and focusing of laser light: review,” Komp. Opt. 41(3), 299–314 (2017).
22. S. B. Odinokov, G. R. Sagatelyan, E. A. Drozdova, and A. Yu. Betin, “Liquid etching of silicon during the fabrication of holographic optical elements,” Nanotekhnol. Razrab. Primen.–XXI Vek 10(2), 38–51 (2018).
23. N. L. Kazanskiı˘ and R. V. Skidanov, “Binary beamsplitters,” Komp. Opt. 35(3), 329–334 (2011).
24. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, Hoboken, New Jersey, 2005), pp. 303–307.
25. V. G. Andreev, A. A. Angeluts, V. A. Vdovin, V. F. Lukichev, and A. P. Shkurinov, “Features of the electrical conductivity of chromium films of nanometer thickness,” Radiotekh. Elektron. 61(1), 66–71 (2016).
26. G. N. Mansurov and O. A. Petriı˘, Electrochemistry of Thin-Film Metallic Films (MGOU, Moscow, 2011), pp. 97–106.
27. AO NII MV, “Photomask based on quartz and glass,” http://www.niimv.ru/products/maskirovannye-plastiny.html.
28. G. R. Sagatelyan, S. B. Odinokov, and V. V. Popov, “Development and fabrication of combined holographic and diffraction optical elements,” in Holography—Science and Practice—Collection of Abstracts of the Twelfth International Conference HoloExpo-2015 (Izd. KNITU-KAI, Kazan, 2015), pp. 258–263.
29. M. S. Kovalev, S. B. Odinokov, E. Yu. Zlokazov, and N. G. Stsepuro, “A combination of computer-generated Fresnel holograms and light-guide substrate with diffractive optical elements for optical display and sighting system,” Proc. SPIE 10818, 1081823 (2018).
30. S. B. Odinokov, G. R. Sagatelyan, A. S. Goncharov, M. S. Kovalev, A. B. Solomashenko, and N. M. Verenikina, “Experimental study of the plasma–chemical etching of glass during the fabrication of diffraction and holographic elements,” Nauka Obraz. (5), 391–410 (2012).
31. K. N. Bugorkov and G. R. Sagatelyan, “Plasma–chemical etching of glass using a high-purity diode circuit,” Estestv. Tekh. Nauki (8), 87–91 (2017).
32. S. B. Odinokov and G. R. Sagatelyan, “The process of fabricating diffraction and holographic optical elements with functional surface microrelief by plasma–chemical etching,” Vestn. MGTU im. N.É. Baumana Ser. Priborostr. 2, 92–104 (2010).
33. A. V. Shishlov, “Technological assurance of the coating uniformity of coatings for components of gyroscopic devices on magnetron-sputtering apparatus,” Dissertation for candidate of technical sciences (MGTU im. N.É Baumana, Moscow, 2016).
34. G. R. Sagatelyan, A. V. Shishlov, and V. D. Shashurin, “Depositing functional metallic thin-film coatings on the essential components of gyroscopic devices for space,” Nanotekhnol. Razrab. Primen.–XXI Vek 8(3), 32–38 (2016).