ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-10-15-24

УДК: 612.843

Differences in recognition of fragmented noisy and non-noisy images revealed by modeling

For Russian citation (Opticheskii Zhurnal):
Бондарко В.М., Чихман В.Н. Различия в опознании фрагментированных зашумлённых и незашумлённых изображений, выявленные при моделировании // Оптический журнал. 2020. Т. 87. № 10. С. 15–24. http://doi.org/10.17586/1023-5086-2020-87-10-15-24   Bondarko V. M. and Chikhman V. N. Differences in recognition of fragmented noisy and non-noisy images revealed by modeling [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 10. P. 15–24. http://doi.org/10.17586/1023-5086-2020-87-10-15-24
For citation (Journal of Optical Technology):
V. M. Bondarko and V. N. Chikhman, "Differences in recognition of fragmented noisy and non-noisy images revealed by modeling," Journal of Optical Technology. 87(10), 574-580 (2020).  https://doi.org/10.1364/JOT.87.000574
Abstract:

Experimental data on the recognition of fragmented contour images with and without noise are compared with the results of recognition process modeling. A reliable approximation in the matched filtering model for erroneous responses in both stimulation cases was obtained only when the contours were replaced with the image silhouettes. The number of correct responses depended on the contour lengths for the case of images without noise and on the number of extended oriented contour sections for the case of noisy images. This indicates the significant role of the extraction of orientations related to the law of good continuation known from Gestalt psychology in the recognition of noisy images. Therefore, differences between noisy fragmented images and fragmented images without noise were determined in the modeling of the recognition process; i.e., the recognition dependence on the background or target environment was demonstrated.

Keywords:

identification of fragmented images, identification errors, modeling, spatio-frequency analysis, image features

OCIS codes: 330.7326, 330.4060, 330.5510

References:

1. F. Rosenblatt, Principles of Neurodynamics: Perceptions and the Theory of the Brain Mechanism (Mir, Moscow, 1965).
2. M. M. Bongard, Recognition Problem (Nauka, Moscow, 1967).
3. N. V. Zavalishin and I. B. Muchnik, “Linguistic (structural) approach to the problem of pattern recognition,” Autom. Remote Control 30(8), 1263–1291 (1970) [Avtom. Telemekh. (8), 86–118 (1969)].
4. K. Y. Shelepin, S. V. Pronin, and Y. E. Shelepin, “Recognizing fragmented images and the appearance of ‘insight’,” J. Opt. Technol. 82(10), 700–706 (2015) [Opt. Zh. 82(10), 70–78 (2015)].
5. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–260 (1962).
6. F. W. Campbell and J. G. Robson, “Application of Fourier analyses to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
7. C. Blakemore and F. W. Campbell, “On the existence in human visual system of neurones selectively sensitive to the orientation and size of retinal image,” J. Physiol. 203(1), 237–260 (1969).
8. V. D. Glezer, Vision and Cognition (Nauka, Leningrad, 1985).
9. S. Coffin, “Spatial frequency analysis of block letters does not predict experimental confusions,” Percept. Psychophys. 23(1), 69–74 (1978).
10. M. J. Gervais, L. O. Harvey, and Y. O. Roberts, “Identification confusions among letters of the alphabet,” J. Exp. Psychol. Hum. Percept. Perform. 10(5), 655–666 (1984).
11. I. A. Vol and M. B. Pavlovskaya, “Correlation between similarity of image Fourier spectra and errors in their recognition,” Fiziol. Chel. 14(1), 47–59 (1988).
12. V. M. Bondarko, “Comparison of metrics defined in the image feature space with the errors in recognition of these images,” Sens. Sist. 3(1), 56–68 (1989).
13. I. A. Vol, M. B. Pavlovskaya, and V. M. Bondarko, “Similarity between Fourier transforms of images predicts their experimental confusion,” Percept. Psychophys. 47(1), 12–21 (1990).
14. F. W. Campbell, “The physics of visual perception,” Philos. Trans. R. Soc. London Ser. B. 290(1038), 5–9 (1980).
15. V. M. Bondarko, D. V. Bondarko, and V. N. Chikhman, “Noise effect on the recognition of fragmented contour images,” Hum. Physiol. 42(3), 312–319 (2016) [Fiziol. Chel. 42(3), 94–102 (2016)].
16. N. N. Krasil’nikov, Theory of Image Transmission and Recognition (Radio I svyaz’, Moscow, 1986).
17. N. N. Krasil’nikov and Y. E. Shelepin, “A functional model of vision,” J. Opt. Technol. 64(2), 136–144 (1997) [Opt. Zh. 64(2), 72–82 (1997)].
18. V. M. Bondarko, L. A. Semenov, S. D. Solnushkin, and V. N. Chikhman, “Age-related size invariance in perception of illusory
and fragmented contours,” Hum. Physiol. 36(6), 653–658 (2010) [Fiziol. Chel. 36(6), 41–47 (2010)].
19. O. A. Vakhrameeva, Y. E. Shelepin, A. Y. Mezentsev, and S. V. Pronin, “Studies of the perception of incomplete outline images of different sizes,” Neurosci. Behav. Physiol. 39, 841 (2009) [Ross. Fiziol. Zh. im. I. M. Sechenova 94(10) 1158–1169 (2008)].
20. V. N. Chikhman, Y. E. Shelepin, and S. V. Pronin, “Experimental study of invariant perception of wavelet images,” J. Opt. Technol. 78(12), 803–807 (2011) [Opt. Zh. 78(12), 50–56 (2011)].
21. Y. E. Shelepin, Introduction to Neuroiconics (Troitskiy most, St. Petersburg, 2017).
22. G. Korn and T. Korn, Mathematics Reference Book for Scientists and Engineers (Nauka, Moscow, 1974).
23. V. N. Chikhman, V. M. Bondarko, M. V. Danilova, A. G. Goluzina, and Y.E. Shelepin, “Complexity of images: experimental and computational estimates compared,” Perception 41, 631–647 (2012).
24. A. P. Ginsburg, “Psychological correlates of a model of the human visual system,” in Proceedings of NAECON IEEE (1971), vol. 71, pp. 283–298.
25. A. P. Ginsburg, “Is the illusory triangle physical or imaginary?” Nature 257, 219–220 (1975).
26. K. Koffka, Principles of Gestalt Psychology (Harcourt Brace, New York, 1935).
27. J. Wagemans, J. H. Elder, M. Kubovy, and S. E. Palmer, “A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization,” Psychol. Bull. 138, 1172–1217 (2012). 580 Vol. 87, No. 10 / October 2020 / Journal of Optical Technology Research Article
28. D. J. Field, A. Hayes, and R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field’,” Vision Res. 33, 173–185 (1993).
29. R. Hess and D. Field, “Integration of contours: new insights,” Trends Cognit. Sci. 3(12), 480–486 (1999).
30. V. N. Chikhman, Y. E. Shelepin, and N. Foreman, “Analysis of the studies of the perception of fragmented images: global description and perception using local features,” Neurosci. Behav. Physiol. 39(6), 569–579 (2009).
31. N. E. Petrenko and D. A. Farber, “Brain organization of the recognition of fragmented images in subjects who show different levels of task performance success,” Hum. Physiol. 39(4), 346–354 (2013) [Fiziol. Chel. 39(4), 13–22 (2013)].
32. I. I. Shoshina and Y. E. Shelepin, “Effectiveness of discrimination of the sizes of line segments by humans with different cognitive style parameters,” Neurosci. Behav. Physiol. 44, 748–753 (2014) [Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova 63(3), 349–356 (2013)].