ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-10-69-80

УДК: 612.821, 612.84, 004.93

Methods of masking threatening images and detecting electrophysiological indicators of their unconscious perception

For Russian citation (Opticheskii Zhurnal):
Хараузов А.К., Шелепин Ю.Е., Цветков О.В., Жукова О.В., Пронин С.В. Методы маскировки угрожающих изображений и электрофизиологические маркеры их неосознанного восприятия // Оптический журнал. 2020. Т. 87. № 10. С. 69–80.  http://doi.org/10.17586/1023-5086-2020-87-10-69-80

    Kharauzov A. K., Shelepin Yu. E., Tsvetkov O. V. , Zhukova O. V. , and Pronin S. V. Methods of masking threatening images and detecting electrophysiological indicators of their unconscious perception [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 10. P. 69–80.  http://doi.org/10.17586/1023-5086-2020-87-10-69-80    

For citation (Journal of Optical Technology):
A. K. Kharauzov, Yu. E. Shelepin, O. V. Tsvetkov, O. V. Zhukova, and S. V. Pronin, "Methods of masking threatening images and detecting electrophysiological indicators of their unconscious perception," Journal of Optical Technology. 87(10), 611-618 (2020). https://doi.org/10.1364/JOT.87.000611
Abstract:

This study is devoted to the search for electrophysiological indicators of the human perception of a threat in a complex background target environment. It is shown that the human visual system can distinguish between threatening and nonthreatening stimuli at an unconscious level, and the primary stages of image processing are similar to those during conscious perception. An increase in the amplitude of the positive wave of the evoked potential with a latency period of 320 ms and a decrease in the amplitude of the electroencephalogram rhythms at a frequency of approximately 12 Hz in the range of 350–750 ms after presentation of a threatening stimulus can serve as electrophysiological indicators of unconscious perception. The results obtained are considered from the perspective of the matched filtration model.

Keywords:

disguise, unconscionable perception, threat, electroencephalographic correlates

OCIS codes: 100.4996, 330.2210, 330.6110

References:

1. S. Dehaene and J. P. Changeux, “Experimental and theoretical approaches to conscious processing,” Neuron 70, 200–227 (2011).
2. C. Koch, The Quest for Consciousness: a Neurobiological Approach, 1st ed. (Roberts & Company Publishers, Denver, CO, 2004).
3. N. Hedger, K. L. Gray, M. Garner, and W. J. Adams, “Are visual threats prioritized without awareness? A critical review and metaanalysis involving behavioral paradigms and 2696 observers,” Psychol. Bull. 142(9), 934–968 (2016).
4. M. Tamietto and B. de Gelder, “Neural bases of the non-conscious perception of emotional signals,” Nature Rev. Neurosci. 11, 697–709 (2010).
5. D. J. Field, “Match filters, wavelets and the statistics of natural scenes,” J. Opt. Technol. 66(9), 788–796 (1999) [Opt. Zh. 66(9), 25–36 (1999)].
6. D. D. Fernandez and A. J. Wilkins, “Uncomfortable images in art and nature,” Perception 37, 1098–1113 (2008).
7. A. J. Wilkins, “A physiological basis for visual discomfort: application in lighting design,” Lighting Res. Technol. 48, 44–54 (2016).
8. G. G. Cole and A. W. Wilkins, “Fear of holes,” Psychol. Sci. 24(10), 1–6 (2013).
9. Y. E. Shelepin, Introduction to Neuroiconics (Troitsky Most, St. Petersburg, 2017).
10. M. A. Fullana, B. J. Harrison, C. Soriano-Mas, B. Vervliet, N. Cardoner, A. Àvila-Parcet, and J. Radua, “Neural signatures of human fear conditioning: an updated and extended meta-analysis of
fMRI studies,” Mol. Psychiatry 21, 500–508 (2016).
11. M. Fredrikson, “Reliability and validity of some specific fear questionnaires,” Scand. J. Psychol. 24, 331–334 (1983).
12. J. L. Kenemans, P. Molenaar, M. N. Verbaten, and J. L. Slanger, “Removal of the ocular artifact from the EEG: a comparison of time and frequency domain methods with simulated and real data,”
Psychophysiology 28, 114 (1991).
13. S. Makeig, M. Westerfield, T. P. Jung, S. Enghoff, J. Townsend, E. Courchesne, and T. J. Sejnowski, “Dynamic brain sources of visual evoked responses,” Science 295, 690–694 (2002).
14. A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J. Neurosci. Methods 134, 9–21 (2004).
618 Vol. 87, No. 10 / October 2020 / Journal of Optical Technology Research Article
15. F. W. Campbell and J. G. Robson, “Application of Fourier analyses to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
16. V. D. Glezer, N. F. Podvigin, L. I. Leushina, and A. A. Nevskaya, Visual Recognition and Its Neurophysiological Mechanisms (Nauka, 1975).
17. Y. E. Shelepin, “Spatial frequency characteristics of the receptive fields of neurons in the lateral suprasylvian gyrus,” Neurophysiology 14(6), 608–614 (1982).
18. Y. E. Shelepin, “Spatial frequency characteristics and human visual acuity,” in Biophysics of Sensory Systems, V. O. Samo˘ılov, ed. (InformMed, St. Petersburg, 2007), chapter 4.
19. E. V. Logunova, Y. E. Shelepin, N. A. Shabalina, A. A. Britikov, and S. V. Pronin, “A study of the ecological safety of the visual environment,” Biotekhnosfera 1–2(31–32), 36–41 (2014).
20. V. V. Savchenko, V. A. Korolev, M. V. Nosov, V. Y. Ivanova, and O. V. Tsvetkov, “Research methodology for unconscious perception of visual stimuli using event-related evoked potentials,” Biotekh. Sist. 1, 25–32 (2017).
21. Y. E. Shelepin, A. K. Harauzov, S. V. Pronin, and N. N. Krasil’nikov, “Electrophysiological studies of spatial vision in conditions of interference,” Fiziol. Chel. 25(1), 33–43 (1999).
22. D. J. Bayle, M.-A. Henaff, and P. Krolak-Salmon, “Unconsciously perceived fear in peripheral vision alerts the limbic system: a MEG study,” PLoS ONE 4(12), e8207 (2009).
23. Y. E. Shelepin, V. A. Fokin, A. K. Harauzov, S. V. Pronin, and V. N. Chikhman, “Localization of the decision-making region when perceiving the form of visual stimuli,” Dokl. Akad. Nauk 429(6), 835–837 (2009).
24. V. A. Barabanshchikov and A. V. Zhegallo, “Recognition of facial expressions in the near periphery of the visual field,” Eksp. Psikhol. 6(2), 58–83 (2013).
25. H. Levi-Aharoni, O. Shriki, and N. Tishby, “Surprise response as a probe for compressed memory states,” PLoS Comput. Biol. 16(2), e1007065 (2020).
26. A. O. Hamm, “Fear, anxiety, and their disorders from the perspective of psychophysiology,” Psychophysiology 57(2), e13474 (2019).
27. J. M. Michalowski, C. M. Melzig, A. I. Weike, J. Stockburger, H. T. Schupp, and A. O. Hamm, “Brain dynamics in spider phobic individuals exposed to phobia-relevant and other emotional stimuli,” Emotion 9, 306–315 (2009).
28. J. M. Michalowski, C. A. Pané-Farré, A. Löw, and A. O. Hamm, “Brain dynamics of visual attention during anticipation and encoding of threat- and safe-cues in spider-phobic individuals,” Soc. Cogn. Affect. Neurosci. 10, 1177–1186 (2015).
29. T. Pflugshaupt, U. P. Mosimann, and W. J. Schmitt, “To look or not to look at threat? Scanpath differences within a group of spider phobics,” J. Anxiety Disord. 21, 353–636 (2007).
30. N. N. Krasil’nikov and Y. E. Shelepin, “Frequency contrast characteristics in the presence of interference,” Fiziol. Chel. 22(4), 33–38 (1996).
31. N. N. Krasil’nikov, Theory of Transmission and Perception of Images (Radio i Svyaz’, Moscow, 1986).
32. N. N. Krasil’nikov and Y. E. Shelepin, “Concealment as a result of coordinated filtering in the human visual system: a scientific publication,” Fiziol. Chel. 22(5), 99–103 (1996).
33. N. N. Krasil’nikov and Y. E. Shelepin, “Functional vision model,” Opt. Zh. 64(2), 72–82 (1997).
34. C. Panitz, A. Keil, and E. M. Mueller, “Extinction-resistant attention to long-term conditioned threat is indexed by selective viscocortical alpha suppression in humans,” Sci. Rep. 9, 15809 (2019).