DOI: 10.17586/1023-5086-2020-87-11-10-20
УДК: 535.233.43
Measuring the radiation coefficient distribution and surface temperature distribution of a tungsten body heated by a powerful laser
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Мантрова Ю.В., Зинин П.В., Булатов К.М., Быков А.А. Измерение распределения коэффициента теплового излучения и температуры поверхности вольфрама, нагретого излучением мощного лазера // Оптический журнал. 2020. Т. 87. № 11. С. 10–20. http://doi.org/10.17586/1023-5086-2020-87-11-10-20
Yu. V. Mantrova, P. V. Zinin, K. M. Bulatov, and A. A. Bykov, "Measuring the radiation coefficient distribution and surface temperature distribution of a tungsten body heated by a powerful laser," Journal of Optical Technology . 87(11), 642-649 (2020). https://doi.org/10.1364/JOT.87.000642
In this article, we present what we believe to be the first successful demonstration of the emissivity distribution together with the temperature distribution of a tungsten plate at the laser heating spot. The measurements were made in the 740–800 nm wavelength range by using the multispectral imaging method on a laser-heating apparatus with a tandem acousto-optic filter (TAOTF). The TAOTF consists of two conjugated acousto-optic crystals connected to a high-definition video camera. The emissivity measurement error was less 7% for a maximum point temperature (2540 K) at the laser heating spot.
laser heating, coefficient of thermal radiation, temperature measurement, laser optics, acoustooptic filter, tungsten heating
OCIS codes: 140.0140, 100.0100, 110.0110
References:1. J. R. Howell, R. Siegel, and M. P. Menguc, Thermal Radiation Heat Transfer (Taylor and Francis, Bristol, 2010).
2. H. Liu, C. Zheng, H. Zhou, and C. Qi, “Measurement of distributions of temperature and wavelength-dependent emissivity of a laminar diffusion flame using hyper-spectral imaging technique,” Meas. Sci. Technol. 27(2), 025201 (2016).
3. J. Jyothi, A. Soum-Glaude, H. S. Nagaraja, and H. C. Barshilia, “Measurement of high-temperature emissivity and photothermalconversion efficiency of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO spectrally selective coating,” Sol. Energy Mater. Sol. Cells 171, 123–130 (2017).
4. L. S. Dubrovinsky and S. K. Saxena, “Emissivity measurements on some metals and oxides using multiwavelength spectral radiometry,” High Temp.–High Pressures 31(4), 393–399 (1999).
5. M. Honner, P. Honnerova, M. Kucera, and J. Martan, “Laser scanning heating method for high-temperature spectral emissivity analyses,” Appl. Therm. Eng. 94, 76–81 (2016).
6. G. Neuer and G. Jaroma-Weiland, “Spectral and total emissivity of high-temperature materials,” Int. J. Thermophys. 19(3), 917–929 (1998).
7. A. N. Magunov, “Spectral pyrometry (Review),” Instrum. Exp. Tech. 52(4), 451–472 (2009).
8. L. Gonzalez-Fernandez, R. B. Perez-Saez, L. del Campo, and M. J. Tello, “Analysis of calibration methods for direct emissivity measurements,” Appl. Opt. 49(14), 2728–2735 (2010).
9. P. Honnerova, J. Martan, and M. Honner, “Uncertainty determination in high-temperature spectral emissivity measurement method of coatings,” Appl. Thermal. Eng. 124, 261–270 (2017).
10. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Taylor and Francis, Bristol, 1992).
11. J. R. Howell, “Radiometric Temperature Measurements,” Int. J. Thermophys. 31(2), 444–445 (2010).
12. V. G. Plotnichenko, Yu. N. Pyrkov, and D. Ya. Svet, “Contactless measurement of the true temperature and spectral emissivity of a substance in a condensed phase,” Teplofiz. Vys. Temp. 37(3), 444–449 (1999).
13. Ya. M. Geda, “Development of spectral methods of measuring the thermodynamic temperature of the surface of heated bodies,” Author’s abstract of candidate’s dissertation, Minsk, Inst. Fiz. AN BSSR (1988).
14. Y. M. Guo, S. J. Pang, Z. J. Luo, Y. Shuai, H. P. Tan, and H. Qi, “Measurement of directional spectral emissivity at high
temperatures,” Int. J. Thermophys. 40(10), 12–24 (2019).
15. M. Honner and P. Honnerova, “Survey of emissivity measurement by radiometric methods,” Appl. Opt. 54(4), 669–683 (2015).
16. A. N. Magunov, “The choice of a spectral interval within which a heated opaque object radiates as a gray body,” Instrum. Exp. Tech. 53(6), 910–914 (2010).
17. Z. X. Du, G. Amulele, L. R. Benedetti, and K. K. M. Lee, “Mapping temperatures and temperature gradients during flash heating in a diamond-anvil cell,” Rev. Sci. Inst. 84(7), 075111 (2013).
18. J. Pujana, L. del Campo, R. B. Perez-Saez, M. J. Tello, I. Gallego, and P. J. Arrazola, “Radiation thermometry applied to temperature measurement in the cutting process,” Meas. Sci. Technol. 18(11), 3409–3416 (2007).
19. A. J. Campbell, “Measurement of temperature distributions across laser-heated samples by multispectral imaging radiometry,” Rev. Sci. Inst. 79(1), 015108 (2008).
20. A. S. Machikhin, P. V. Zinin, A. V. Shurygin, and D. D. Khokhlov, “Imaging system based on a tandem acousto-optical tunable filter for in situ measurements of the high temperature distribution,” Opt. Lett. 41(5), 901–904 (2016).
21. P. V. Zinin, A. A. Bykov, A. S. Machikhin, I. A. Troyan, K. M. Bulatov, Y. V. Mantrova, V. I. Batshev, M. I. Gaponov, I. B. Kutuza, S. V. Rashchenko, V. B. Prakapenka, and S. K. Sharma, “Measurement of the temperature distribution on the surface of the laser heated specimen in a diamond anvil cell system by the tandem imaging acousto-optical filter,” High Pressure Res. 39(1), 131–149 (2019).
22. K. M. Bulatov, Y. V. Mantrova, A. A. Bykov, M. I. Gaponov, P. V. Zinin, A. S. Machikhin, I. A. Troyan, V. I. Batshev, and I. B. Kutuza, “Multi-spectral image processing for the measurement of spatial temperature distribution on the surface of the laser heated microscopic object,” Comput. Opt. 41(6), 864–868 (2017). Research Article Vol. 87, No. 11 / November 2020 / Journal of Optical Technology 649
23. G. Ribaud, Traité de pyromètrie optique (Revue d’optique théorique et instrumentale, 1931).
24. V. B. Prakapenka, A. Kubo, A. Kuznetsov, A. Laskin, O. Shkurikhin, P. Dera, M. L. Rivers, and S. R. Sutton, “Advanced flat-top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium,” High Pressure Res. 28(3), 225–235 (2008).
25. A. A. Bykov, V. A. Kazakov, V. E. Pozhar, I. A. Troyan, A. S. Machikhin, V. I. Batshev, A. V. Shurygin, S. V. Boritko, P. V. Zinin, D. D. Khokhlov, and P. S. Martyanov, “Acousto-optic video spectrometer for measuring the spatial temperature distribution of micro-objects,” Prib. Tekh. Eksp. (3), 100–105 (2017).
26. O. Kozlova, A. Sadouni, D. Truong, S. Briaudeau, and M. Himbert, “Tunable transportable spectroradiometer based on an acoustooptical tunable filter: development and optical performance,” Rev. Sci. Instrum. 87(12), 125101 (2016).
27. L. N. Latyev, V. A. Petrov, V. Ya. Chekhov, and E. Sheshtakov, Radiative Properties of Solid Materials (Energiya, Moscow, 1974).
28. N. R. Draper and H. Smith, Applied Regression Analysis (Wiley, New York, 1966).
29. J. Park, “CMOS image sensor for smart cameras,” in Theory and Applications of Smart Cameras (Springer, The Netherlands, 2015), pp. 3–20.
30. “Standard for characterization and presentation of specification data for image sensors and cameras,” EVMA 1288, 2016.
31. R. Giampaoli, I. Kantor, M. Mezouar, S. Boccato, A. D. Rosa, R. Torchio, G. Garbarino, O. Mathon, and S. Pascarelli, “Measurement of temperature in the laser-heated diamond anvil cell: comparison between reflective and refractive optics,” High Pressure Res. 38(3), 250–269 (2018).
32. J. R. Taylor, An Introduction to Error Analysis : The Study of Uncertainties in Physical Measurements (University Science Books, Sausalito, California, 1997; Mir, Moscow, 1985).
33. A. S. Machikhin, P. V. Zinin, A. V. Shurygin, and D. D. Khokhlov, “Imaging system based on a tandem acousto-optical tunable filter for in-situ measurements of the high temperature distribution,” Opt. Lett. 41(5), 901–904 (2016).