DOI: 10.17586/1023-5086-2020-87-11-03-09
УДК: 535-4; 535.5
A study on superachromatism of quarter-wave retarder for visible range of spectrum
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Mukhopadhyay N., Saha A., Bhattacharya K. A study on superachromatism of quarter-wave retarder for visible range of spectrum (Сверхахроматическая четвертьволновая пластина для видимого диапазона спектра) [на англ. яз.] // Оптический журнал. 2023. Т. 90. № 9. С. 91–101. http://doi.org/10.17586/1023-5086-2023-90-09-91-101
N. Mukhopadhyay, A. Saha, and K. Bhattacharya, "Study on superachromatism of a quarter-wave retarder for the visible range of the spectrum," Journal of Optical Technology . 87(11), 638-641 (2020). https://doi.org/10.1364/JOT.87.000638
Achromatic retarders are key components used in optical system design. Various researchers have proposed different combinations of quarter-wave plates that exhibit good achromatic behavior over a broad wavelength range. One of the pioneering works in this area was that of Pancharatnam, who proposed a combination of three wave plates where the fast axis of the first and the last wave plates were parallel, and both quarter-wave and half-wave achromatic retarders were obtained by proper orientation of the central wave plate. In this paper the superachromatic behavior of a quarter-wave retardation system, consisting of three wave plates, is studied in the spectral range from 500–700 nm (i.e., the visible range), centered around the design wavelength of 575 nm. It will be shown that, if the second and third wave plates of the proposed configuration are oriented at 67.5° and 90°, respectively, a retardation variation of as low as ±0.13∘ is observed over the said visible range, indicating the superachromatic nature of the proposed system.
superachromatic, quarter wave retarder, visible range
OCIS codes: 220.4830, 230.5440, 260.5430
References:1. Pancharatnam S. Achromatic combinations of birefringent plates. Part II. An achromatic quarter wave plate // Proc. Indian Academy of Sciences. 1955. V. 41. № 4. Sec. A. P. 137–144.
2. Hariharan P. Achromatic retarder using quartz and mica // Meas. Sci. Technol. 1995. V. 6. № 7. P. 1078–1079.
3. Passilly N., Ventola K., Karvinen P., Turunen J., Tervo J. Achromatic phase retardation by sub wavelength gratings in total internal reflection // J. Opt. A: Pure Appl. Opt. 2007. V. 10. № 1. P. 015001.
4. Korte E., Otto A. Infrared diffuse reflectance accessory for local analysis on bulky samples // Appl. Spectrosc. 1988. V. 42. № 8. P. 1327–1577.
5. De-Er Y., Yan Y.B., Liu H.T., Lu S., Jin G.F. Broadband achromatic phase retarder by subwavelength grating // Opt. Commun. 2003. V. 227. № (1–3). P. 49–55.
6. Hariharan P., Malacara D. A simple achromatic half-wave retarder // J. Modern Opt. 1994. V. 41. № 1. P. 15–18.
7. Samoylov A.V., Samoylov V.S. Achromatic and super-achromatic zero order waveplates // Proc. LFNM, IEEE. 2003. P. 119–121.
8. McIntyre C.M., Harris S.E. Achromatic wave plates for the visible spectrum // JOSA. 1968. V. 58. № 12. P. 1575–1580.
9. Hariharan P. Broad-band superachromatic retarders // Meas. Sci. Technol. 1998. V. 9. № 1. P. 1678–1681.
10. Saha A., Bhattacharya K., Chakraborty A.K. Reconfigurable achromatic half-wave and quarterwave retarder in near infrared using crystalline quartz plates // Opt. Eng. 2011. V. 50. № 3. P. 034004-1–034004-4.
11. King R.J. Quarter-wave retardation systems based on the Fresnel rhomb principle // J. Sci. Instrum. 1966. V. 43. P. 617–622.
12. Abuleil M.J., Abdulhalim I. Tunable achromatic liquid crystal waveplates // Opt. Lett. 2014. V. 39. № 19. P. 5487–5490.
13. Safrani A., Abdulhalim I. Liquid crystal polarization rotator and a tunable polarizer // Opt. Lett. 2009. V. 34. № 12. P. 1801–1803.
14. Aharon O., Abdulhalim I. Liquid crystal wavelength independent continuous polarization rotator // Opt. Eng. 2010. V. 49. № 3. P. 034002–034004.
15. Abuleil M.J., Abdulhalim I. Broadband ellipso-polarimetric camera utilizing tunable liquid crystal achromatic waveplate with improved field of view // Opt. Exp. 2019. V. 27. № 9. P. 12011–12024.
16. Hurwitz H., Jones R.C. A New calculus for the treatment of optical systems II. Proof of three general equivalence theorems // JOSA. 1941. V. 31. № 7. P. 493–499.
17. Bennet JM. Polarizers / in: Handbook of Optics. NY: McGraw-Hill., 1995. V. 2. P. 3.46–3.49.