ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-11-31-40

УДК: 621.397

Assessment of parameters of partially coherent interference fringes using the wiener adaptive filtering method

For Russian citation (Opticheskii Zhurnal):
Гуров И.П., Каранова В.О.  Оценивание параметров интерференционных полос частичной когерентности методом адаптивной фильтрации Винера // Оптический журнал. 2020. Т. 87. № 11. С. 21–30. http://doi.org/10.17586/1023-5086-2020-87-11-21-30
For citation (Journal of Optical Technology):
I. P. Gurov and V. O. Kapranova, "Assessment of parameters of partially coherent interference fringes using the Wiener adaptive filtering method," Journal of Optical Technology . 87(11), 658-664 (2020)
Abstract:
The results of application of Wiener adaptive filtering to dynamic assessment of parameters of interferometric signals formed using a partially coherent radiation source in interference profilometry and optical coherence tomography are presented. It was demonstrated that the envelope of the interference fringes and the phase step of the interferometric signals can be determined by using the obtained Wiener adaptive filter coefficients and the criterion of the minimum error dispersion relative to the formed reference signal. Experimental results of processing the partially coherent interferometric signals when determining the surface profiles and inner microstructures of objects are presented.
Keywords:

interferometry of partial coherence, optical coherent tomography, Wiener filtration

OCIS codes: 120.3180, 180.3170, 110.4500, 070.2025

References:

1. Y. V. Kolomiitsov, Interferometers (Mashinostroenie, Leningrad, 1976).
2. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
3. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
4. G. Häusler and M. V. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3,
21–31 (1998).
5. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence
tomography,” Opt. Express 11, 2183–2389 (2003).
6. P. De Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photon. 7, 1–65 (2015).
7. I. Gurov, “Signal processing methods in full-field optical coherence microscopy,” in Handbook of Full-Field Optical Coherence
Microscopy: Technology and Applications, A. Dubois, ed. (Pan Stanford Publishing Pte. Ltd, New York, 2016), pp. 183–222.
8. M. Born and E.Wolf, Principles of Optics (Nauka, Moscow, 1973).
9. J. Goodman, Statistical Optics (Mir, Moscow, 1988).
10. I. P. Gurov and A. S. Zakharov, “Analysis of characteristics of interference fringes by nonlinear Kalman filtering,” Opt. Spectrosc. 96(2),
175–181 (2004).
11. I. Gurov, E. Ermolaeva, and A. Zakharov, “Analysis of low-coherence interference fringes by the Kalman filtering method,” J. Opt. Soc. Am.
A 21, 242–251 (2004).
12. S. V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction (Wiley, Chichester, 2006), pp. 165–186.
13. B. Widrow and P. Stearns, Adaptive Signal Processing (Radio i Svyaz’, Moscow, 1989).
14. I. P. Gurov, I. A. Artem’eva, and V. O. Kapranova, “Dynamic fringe phase estimation in controllable phase-shifting interferometry by
adaptive Wiener filtering,” J. Opt. Technol. 87(5), 284–292 (2020) [Opt. Zh. 87(5), 42–53 (2020)].
15. I. Gurov, M. Volkov, E. Zhukova, N. Ivanov, N. Margaryants, A. Potemkin, A. Samokhvalov, and S. Shelygina, “Evaluation of laser
ablation crater relief by white light micro interferometer,” Proc. SPIE 10329, 103294I (2017).