DOI: 10.17586/1023-5086-2020-87-11-53-57
УДК: 621.373.826:621.384.3
Small-scale infrared surround scan system with image motion blur compensation based on multisegment optical wedges
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Павлов Н.И., Прилипко А.Я., Старченко А.Н. Малогабаритная система кругового обзора с компенсатором смаза изображения для инфракрасного диапазона спектра на основе многосегментных оптических клиньев // Оптический журнал. 2020. Т. 87. № 11. С. 53–57. http://doi.org/ 10.17586/1023-5086-2020-87-11-53-57
N. I. Pavlov, A. Ya. Prilipko, and A. N. Starchenko, "Small-scale infrared surround scan system with image motion blur compensation based on multisegment optical wedges," Journal of Optical Technology. 87(11), 673-676 (2020). https://doi.org/10.1364/JOT.87.000673
We study an infrared surround scan system based on a photodetector array with an entrance pupil of a small diameter with no specific requirements for achieving versatility and a high dynamic performance. A cooled midinfrared photodetector with an objective and a compensator for the tangential motion blur of an image are housed within a rotating unit. Command and data exchange are ensured using a rotating communication device mounted on a rotation axis of the moving unit. Multisegment assemblies of optical wedges are used instead of single wedges in the compensator for the tangential motion blur of the image. We demonstrate that this engineering design makes it possible to increase the signal integration time by several times compared with a basic design with single-segment wedges.
infrared system of circular view, matrix photodetector, image lubricant compensator, optical wedges, rotating contact device
OCIS codes: 220.4830, 280.3400, 120.1880
References:1. N. V. Prudnikov and V. B. Shlishevskii, “Surround optoelectronic surveillance systems,” Vestn. SGUGIT 33(1), 148–160 (2016).
2. A. Y. Prilipko and N. I. Pavlov, “A way to construct a multifunction optical-radar system with circular coverage,” J. Opt. Technol. 75(4), 250–254 (2018) [Opt. Zh. 75(4), 51–56 (2008)].
3. P.-O. Nougues, P. Baize, F. Roland, J.-F. Olivier, and M. Renaudat, “Third-generation naval IRST using the step-and-stare architecture,” Proc. SPIE 6940, 69401B (2008).
4. N. I. Pavlov and A. Y. Prilipko, “Rapid survey of a circular zone using an IR scanning system with a photodetector array,” J. Opt. Technol. 80(5), 313–315 (2013) [Opt. Zh. 80(5), 71–75 (2013)].
5. M. F. Borisov, O. A. Lebedev, N. I. Pavlov, and A. Y. Prilipko, “Optoelectronic circular scanning system. 1. Structural setup and
version of practical implementation,” J. Opt. Technol. 81(9), 493–498 (2014) [Opt. Zh. 81(9), 15–21 (2014)].
6. N. I. Pavlov and A. Y. Prilipko, “Infrared circular scan hinge-type optical location systems: development experience,” in Proceedings of the International Scientific Technical Conference “Radar, Navigation, and Communications” (2016), pp. 1237–1246.