DOI: 10.17586/1023-5086-2020-87-11-68-73
УДК: 001.8, 001.1
Polarization control in single mode optical fibers
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Chughtai M.T., Alsaif H., bin Ali N., Bouazzi Y., S Alshammari A. Polarization control in single mode optical fibers (Управление состоянием поляризации в одномодовых оптических волокнах) [на англ. яз] // Оптический журнал. 2020. Т. 87. № 11. С. 68–73. http://doi.org/ 10.17586/1023-5086-2020-87-11-68-73
Muhammad Tajammal Chughtai, Haitham Alsaif, Naeem bin Ali, Yassine Bouazzi, and Ahmad S. Alshammari, "Polarization control in single mode optical fibers," Journal of Optical Technology. 87(11), 684-687 (2020). https://doi.org/10.1364/JOT.87.000684
Satisfactory operation of a dual beam laser Doppler anemometer system requires that the maximum fringe contrast is achieved. This implies, in turn, that the two intersecting beams should have the same intensity and the same state of polarization. This requirement is achieved in many systems by careful adjustment of the polarization state, often at the time when the laser Doppler anemometer system is first aligned.
The present paper describes a compact and relatively cheap device which enables the polarization of the light transmitted through a step index mono-mode optical fiber to be controlled. Design methods for this device are discussed and a prototype opto-mechanical system is described. Finally, some experimental data are presented from which the performance of the device in adjusting the polarization of a laser beam can be assessed
laser, optical fiber, optical wave plates, polarization
OCIS codes: 120.0120, 000.2170, 030.1670, 060.2430
References:1. Kaminow I. Polarization in optical fibers // IEEE J. Quantum Electron. 1981. V. 17. № 1. P. 15–22.
2. Jones J.D.C., Corke M., Kersey A.D. Single-mode fiber-optic holography // J. Phys. E: Scientific Instruments. 1984. V. 17. № 4. P. 271.
3. Cao H. Applications of multimode fibers for spectroscopy and polarization control // Optical Fiber Commun. Conf. San Diego, California, United States. 11–15 March, 2018.
4. Bony P.-Y., Guasoni M., Pitois S., Picozzi A., Sugny D., Jauslin H., Millot G., Wabnitz S., Fatome J. All-optical polarization control for telecom applications // Optical Fiber Commun. Conf. Los Angeles, California, United States. 22–26 March 2015.
5. Zhonglu Z.O.U., Qingqi X., Bai C. Application of single mode optical fiber in OPGW // Internat. J. Simulation Systems, Science & Technology. 2016. V. 17. № 37. P. 23.1–23.5.
6. Weise F., Pawłowska M., Achazi G., Lindinger A. Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fiber // J. Optics. 2011. V. 13. № 7. P. 1–8.
7. Ulrich R. Polarization stabilization on single mode fiber // Appl. Phys. Lett. 1979. V. 35. № 11. P. 840–842.
8. Koch B., Noé R., Mirvoda V. Temperature-insensitive and two-sided endless polarization control // IEEE Photonics Technol. Lett. 2012. V. 24. № 22. P. 2077–2079.
9. Durst F., Melling A., Whitelaw J.H. Principles and practice of laser-Doppler anemometry. NY: Academic Press, 1976. P. 90.
10. Ulrich R., Johnson M. Single-mode fiber-optical polarization rotator // Appl. Opt. 1979. V. 18. № 11. P. 1857–1861.
11. Ramaswamy V., Stolen R.H., Divino M.D., Pleibel W. Birefringence in elliptically clad borosilicate single-mode fibers // Appl. Opt. 1979. V. 18. № 24. P. 4080–4084.
12. Heismann F., Whalen M. Fast automatic polarization control system //IEEE Photonics Technol. Lett. 1992. V. 4. № 5. P. 503–505.
13. Lefevre H.C. Single-mode fiber fractional wave devices and polarization controllers // Electron. Lett. 1980. V. 16. № 20. P. 778–780.