ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-12-32-42

УДК: 004.932

ORDSLAM dataset for comparison of outdoor RGB-D SLAM algorithms

For Russian citation (Opticheskii Zhurnal):

Пономарев С.В., Дроздов С.А. База данных ORDSLAM для сравнения эффективности RGB-D SLAM-алгоритмов вне помещения // Оптический журнал. 2020. Т. 87. № 12. С. 32 –42. http://doi.org/10.17586/1023-5086-2020-87-12-32-42

For citation (Journal of Optical Technology):
S. V. Ponomarev and S. A. Drozdov, "ORDSLAM dataset for comparison of outdoor RGB-D SLAM algorithms," Journal of Optical Technology. 87(12). 726-732 (2020).  https://doi.org/10.1364/JOT.87.000726
Abstract:

A new dataset has been assembled to compare the efficiency of simultaneous localization and mapping algorithms out of doors in areas with high a priori uncertainty. The images were made using a high-resolution stereo camera, with reference camera trajectories being used to calculate movement within the scene based on manually identified key points. The resulting dataset of images can be used to compare the robustness of simultaneous localization and mapping algorithms under complex lighting conditions outdoors.

Keywords:

simultaneous localization and imaging of the terrain map, three-dimensional comparison of images

OCIS codes: 150.1135

References:

1. D. Scaramuzza and F. Fraundorfer, “Visual odometry [Tutorial],” IEEE Rob. Autom. Mag. 18(4), 80–92 (2011).
2. J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 2012, pp. 573–580.
3. Z. Bauer, F. Gomez-Donoso, E. Cruz, S. Orts-Escolano, and M. Cazorla, “UASOL, a large-scale high-resolution outdoor stereo dataset,” Sci. Data 6, 162 (2019).
4. M. Firman, “RGBD datasets: past, present and future,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, Nevada, 2016, pp. 19–31.
5. ORDSLAM dataset, https://svponomarev.github.io/. 6. F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W.
Burgard, “An evaluation of the RGB-D SLAM system,” in IEEE International Conference on Robotics and Automation, Saint Paul, Minnesota, 2012, pp. 1691–1696.
7. R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras,” IEEE Trans. Rob. 33, 1255–1262 (2017).
8. T. Schops, T. Sattler, and M. Pollefeys, “BAD SLAM: bundle adjusted direct RGB-D SLAM,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, California, 2019, pp. 134–144.
9. B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” J. Opt. Soc. Am. A 4, 629–642 (1987).