ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-12-43-49

УДК: 621.397.13

Image-stabilization system with nondestructive readout of video information

For Russian citation (Opticheskii Zhurnal):

Малашин Д.О. Система стабилизации изображения с неразрушающим считыванием видеоинформации // Оптический журнал. 2020. Т. 87. № 12. С. 43 –49. http://doi.org/10.17586/1023-5086-2020-87-12-43-49

For citation (Journal of Optical Technology):

D. O. Malashin, "Image-stabilization system with nondestructive readout of video information," Journal of Optical Technology. 87(12), 733-737 (2020).  https://doi.org/10.1364/JOT.87.000733

Abstract:

This paper proposes a fundamental improvement of existing image-stabilizing systems by using nondestructive-readout technology in a photodetector array. It is shown that the use of the proposed approach makes it possible to avoid losses of part of the image field by comparison with a stabilization system that uses supplementary photodetectors for the measurements. The proposed approach can be used to create promising compact video cameras with image stabilization that allows for displacement, rotation, and scale changes of the image.

Keywords:

image stabilization, nondestructive reading, blurriness

OCIS codes: 040.1490, 100.4550, 110.4153, 100.2980

References:

1. D. N. Es’kov, Yu. P. Larionov, and V. A. Novikov, Automatic  Stabilization of an Optical Image (Mashinostroenie, Leningrad, 1988).
2. A. K. Tsytsulin, Sh. S. Fakhmi, A. A. Mantsvetov, D. O. Malashin, and I. A. Zubakin, “Stabilization of images on the basis of a measurement of Research Article Vol. 87, No. 12 / December 2020 / Journal of Optical Technology 737 their displacement, using a photodetector array and two linear photodetectors in combination,” J. Opt. Technol. 79(11), 727–732 (2012) [Opt. Zh. 79(11), 67–75 (2012)].
3. D. O. Malashin, “Experimental study of a direct method of measuring image displacement with subpixel precision,” Izv. Vyssh. Ucheb. Zaved. Ross. Ser. Radioelek. (3), 55–58 (2013).
4. S. F. H. Barnett, M. Snape, C. N. Hunter, M. A. Juárez, and A. J. Cadby, “A novel application of non-destructive readout technology to localisation microscopy,” Sci. Rep. 7, 42313 (2017).
5. G. R. Sims, G. Atlas, E. Christensen, R. W. Cover, S. Larson, H. J. Meyer, and W. V. Schempp, “A CMOS visible-image sensor with non-destructive readout capability,” Proc. SPIE 10709, 107090V (2018).
6. P. F. I. Scott, A. S. Kachatkou, A. L. Frost, and R. G. van Silfhout, “A high dynamic range camera with a non-destructive readout complementary metal–oxide–semiconductor sensor,” Meas. Sci. Technol. 20(10), 104004 (2009).
7. A. Kachatkou and R. Silfhout, “Dynamic range enhancement algorithms for CMOS sensors with non-destructive readout,” in IEEE International Workshop on Imaging Systems and Techniques, Crete, 2008, pp. 132–137.
8. J. Shah, “Pixel circuit with non-destructive readout and methods of operation thereof,” U.S. Patent No. 7420154 B2 (2008).
9. C. Frojdh, “Triggering of solid-state X-ray images with non-destructive readout capability,” U.S. Patent No. 6307915 B1 (2001).
10. D. O. Malashin and R. O. Malashin, “Image-stabilization device,” Russian Federation Patent No. 2716208 (2020).
11. NOIL1SM4000A/D, LUPA4000: 4-megapixel high-speed CMOS sensor, Semiconductor Components Industries, December 2019.
12. D. O. Malashin, “Methods of increasing the speed and accuracy of image stabilization in industrial TV cameras,” Dissertation for candidate’s degree (SPBGÉTU LÉTI im. V. I. Ul’yanova (Lenina), St. Petersburg, 2014).
13. S. Nagashima, K. Ito, T. Aoki, H. Ishii, and K. Kobayashi, “A highaccuracy rotation estimation algorithm based on 1D phase-only correlation,” Lect. Notes Comput. Sci. 4633, 210–221 (2007).
14. W. Wei, S. Wang, X. Zhang, and Z. Tang, “Estimation of imagerotation angle using interpolation-related spectral signatures with  application to blind detection of image forgery,” IEEE Trans. Inf. Forensics Secur. 5(3), 507–517 (2010).
15. M. Prince, S. A. Alsuhibani, and N. A. Siddiqi, “A step towards the optimal estimation of image orientation,” IEEE Access 7, 185750 (2019).
16. H.-G. Ha, I.-S. Jang, K.-W. Ko, and Y.-H. Ha, “Robust subpixel shift estimation using iterative phase correlation of a local region,” Proc. SPIE 7241, 724115 (2009).
17. M. Rais, J.-M. Morel, and G. Facciolo, “Iterative gradient-based shift estimation: to multiscale or not to multiscale?” in Iberoamerican Congress on Pattern Recognition (2015), pp. 416–423.
18. J. Bigot, F. Gamboa, and M. Vimond, “Estimation of translation, rotation, and scaling between noisy images using the Fourier–Mellin transform,” SIAM J. Imaging Sci. 2(2), 614–645 (2009).
19. R. O. Malashin, “Principle of least action in dynamically configured image-analysis systems,” J. Opt. Technol. 86(11), 678–685 (2019) [Opt. Zh. 86(11), 5–13 (2019)].
20. D. O. Malashin and R. O. Malashin, “Efficient hardware implementation of neural networks,” in Neural Networks and Neurotechnologies (VVM, St. Petersburg, 2019), chap. 23.