ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-12-84-92

УДК: 617.751-072.7, 612.84

Vanishing optotypes and objective measurement of human visual acuity

For Russian citation (Opticheskii Zhurnal):

Моисеенко Г.А., Пронин С.В., Жильчук Д.И., Коскин С.А., Шелепин Ю.Е. «Исчезающие» оптотипы и объективное измерение остроты зрения человека// Оптический журнал. 2020. Т. 87. № 12. С. 84–92. http://doi.org/10.17586/1023-5086-2020-87-12-84-92

For citation (Journal of Optical Technology):
G. A. Moiseenko, S. V. Pronin, D. I. Zhil’chuk, S. A. Koskin, and Yu. E. Shelepin, "Vanishing optotypes and objective measurement of human visual acuity," Journal of Optical Technology. 87(12), 761-766 (2020). https://doi.org/10.1364/JOT.87.000761
Abstract:

The eye resolving power and human visual acuity are the most important parameters of physiological optics. In this study, we compare our results of psychophysics, subjective measurement of visual acuity, with the results of electrophysiological measurement, objective measurement of visual acuity using vanishing optotypes that differ in spatial (sharp or non-sharp) and semantic (animate or inanimate) properties. The subject is instructed to provide consciously the classification of images: are they sharp, or are they non-sharp. At the same time the subject unconsciously provides another classification: what objects presented to him as images are animate or inanimate. This unconscious classification was provided by the subject without instruction to do it, and it was independent of his conscious decisions made during testing of the presented images of the objects (sharp or non-sharp). We see the observer’s unconscious classification (animate or inanimate) only using electrophysiological measurements. The markers of unconscious recognition are the visual evoked potential components P200 and N170, recorded from the frontal brain area. The discovered effect works as an instrument for objective visual acuity measurements.

Keywords:

atmospheric turbulence, multi-aperture optical system, blind deconvolution, super-resolution

OCIS codes: атмосферная турбулентность, многоапертурная оптическая система, слепая деконволюция, сверхразрешение

References:

1. S. S. Golovin and D. A. Sivtsev, Russian Diagnostic Tables for Vision Acuity Investigation (Gos. Izd., Moscow, 1925).
2. V. M. Bondarko and M. V. Danilova, “What spatial frequency do we use to detect the orientation of a Landolt C?” Vision Res. 37(15), 2153–2156 (1997).
3. Yu. E. Shelepin, L. N. Kolesnikova, and Yu. I. Levkovich, Visocontrastometry (Nauka, Leningrad, 1985).
4. Yu. E. Shelepin, V. V. Volkov, and V. B. Makulov, “Measuring functional capabilities of human visual system,” Vestn. Akad. Nauk SSSR (9), 63–72 (1987).
5. B. Howland, A. Ginsburg, and F. Campbell, “High-pass spatial frequency letters as clinical optotypes,” Vision Res. 18(8), 1063–1066 (1978).
6. V. V. Volkov, Yu. E. Shelepin, V. B. Makulov, L. N. Kolesnikova, and V. N. Pauk, “New letter tests for measuring visual acuity,” Oftal’mol. Zh. (5), 294–296 (1987).
7. A. Medina and B. Howland, “A novel high-frequency visual acuity chart,” Ophthalmic Physiol. Opt. 8(1), 14–18 (1988).
8. L. Frisen, “Vanishing optotypes: new type of acuity test letters,” Arch. Ophthalmol. 104(8), 1194–1198 (1986).
9. M. L. Simas and S. L. Silva, “Vanishing optotypes: is single presentation superior to chart exposure?” Braz. J. Med. Biol. Res. 24(2), 145–148 (1991).
10. T. O. Adoh and J. M. Woodhouse, “The Cardiff acuity test used for measuring visual acuity development in toddlers,” Vision Res. 34(4), 555–560 (1994).
11. R. T. Mackie, K. J. Saunders, R. E. Day, G. N. Dutton, and D. L. McCulloch, “Visual acuity assessment of children with neurological impairment using grating and vanishing optotype acuity cards,” Acta Ophthalmol. Scand. 74(5), 483–487 (1996).
12. Yu. E. Shelepin, V. B. Makulov, N. N. Krasil’nikov, V. N. Chihman, S. V. Pronin, V. F. Danilichev, and S. A. Koskin, “Iconics and methods of assessing the functional capabilities of the visual system,” Sens. Sist. 12(3), 319–328 (1998).
13. S. A. Koskin, E. V. Boiko, A. F. Sobolev, and Y. E. Shelepin, “Mechanisms of recognition of the outlines of ‘vanishing’ optotypes,” Neurosci. Behav. Physiol. 37(1), 59–65 (2007).
14. S. A. Koskin, E. V. Boiko, and Y. E. Shelepin, “Modern methods of measuring the resolving power of the visual system,” J. Opt. Technol. 75(1), 17–20 (2008) [Opt. Zh. 75(1), 22–27 (2008)].
15. S. A. Koskin, V. V. Volkov, V. F. Danilichev, A. A. Kovalskaya, and T. A. Doktorova, “Comparative analysis of the results of various visometry methods,” J. Opt. Technol. 86(5), 301–305 (2019) [Opt. Zh. 86(5), 51– 56 (2012)].
16. A. K. Kharauzov, S. V. Pronin, A. F. Sobolev, S. A. Koskin, E. V. Boiko, and Yu. E. Shelepin, “Objective measurement of human visual acuity by visual evoked potentials,” Neurosci. Behav. Physiol. 36(9), 1021– 1030 (2006).
17. W. D. Zheng and Y. Liu, Atlas of Testing and Clinical Application for ROLAND Electrophysiological Instrument (Technology Press, Beijing, 2007).
18. V. A. Fokin, Y. E. Shelepin, A. K. Kharauzov, G. E. Trufanov, A. V. Sevost’yanov, S. V. Pronin, and S. A. Koskin, “Localization of human cortical areas activated on perception of ordered and chaotic images,” Neurosci. Behav. Physiol. 38(7), 677–685 (2008).
19. A. Keil, S. Debener, G. Gration, M. Junghoefer, E. S. Kapperman, S. J. Luck, P. Luu, G. A. Miller, and C. M. Yee, “Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography,” Psychophysiology 51(1), 1–21 (2014).
20. G. A. Moiseenko, Yu. E. Shelepin, A. K. Kharauzov, S. V. Pronin, V. N. Chikhman, and O. A. Vakhrameeva, “Classification and recognition of images of animate and inanimate objects,” J. Opt. Technol. 82(10), 685–693 (2015) [Opt. Zh. 82(10), 53–64 (2015)].
21. G. A. Moiseenko, E. A. Vershinina, S. V. Pronin, V. N. Chihman, Y. E. Shelepin, and E. S. Mikhailova, “Latency of evoked potentials in the tasks involving classification of images after wavelet filtration,” Hum.
Physiol. 42(6), 615–625 (2016).
22. G. A. Moiseenko, S. V. Pronin, Yu. E. Shelepin, and V. N. Chihman, “Method for objective measurement of visual acuity (variants),” Russian patent 2690917 (2019).
23. V. Klucharev, M. A. M. Munneke, A. Smidts, and G. Fernández, “Downregulation of the posterior medial frontal cortex prevents social conformity,” J. Neurosci. 31(33), 11934–11940 (2011).
24. A. Shestakova and V. Klucharev, “Social influence and persuasion and message propagation,” in Brain Mapping: An Encyclopedic Reference (Academic Press, San Diego, 2015), pp. 251–257.
25. A. Shestakova, J. Rieskamp, S. Tugin, J. Krutitskaya, V. Klucharev, and A. Ossadtchi, “Electrophysiological precursors of social conformity,” Soc. Cognit. Affective Neurosci. 8(7), 756–763 (2013).