ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-87-02-03-35

УДК: 535-15, 544.17, 615.47:617-089, 616.1, 616.8-089, 617.7, 621.372.632, 621.373.826

Optical coherence tomography angiography in the diagnosis of ophthalmologic diseases: problems and prospects (Review)

For Russian citation (Opticheskii Zhurnal):

Серебряков В.А., Бойко Э.В., Гацу М.В., Измайлов А.С., Калинцева Н.А., Мелихова М.В., Папаян Г.В. Оптическая когерентная томографическая ангиография в диагностике офтальмологических заболеваний. Проблемы, перспективы (обзор) // Оптический журнал. 2020. Т. 87. № 2. С. 3–35. http://doi.org/10.17586/1023-5086-2020-87-02-03-35

 

Serebryakov V.A., Boiko E.V., Gatsu M.V., Izmaylov A.S., Kalintseva N.A., Melikhova M.V., Papayan G.V. Optical coherence tomography angiography in the diagnosis of ophthalmologic diseases: problems and prospects (Review) [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 2. P. 3–35. http://doi.org/10.17586/1023-5086-2020-87-02-03-35

For citation (Journal of Optical Technology):

V. A. Serebryakov, E. V. Boiko, M. V. Gatsu, A. S. Izmailov, N. A. Kalintseva, M. V. Melikhova, and G. V. Papayan, "Optical coherence tomography angiography in the diagnosis of ophthalmologic diseases: problems and prospects (Review)," Journal of Optical Technology. 87(2), 67-93 (2020). https://doi.org/10.1364/JOT.87.000067

Abstract:

†In Memory of Yuri˘ı Tarasovich Mazurenko—one of the origi-
nators of spectral optical coherence tomography  

Optical coherence tomography angiography, which is based on optical coherence tomography, is a diagnostic technology that makes it possible to noninvasively visualize in vivo the dynamics of blood flow with micrometer resolution in depth down to several millimeters. This analytic review presents the construction principles and prospects of using optical coherence tomography angiography in ophthalmology. Problems of the anatomical and functional diagnosis of the retina in real time are analyzed by comparing the architecture of modern optical coherence tomography and optical coherence tomography angiography. The results of applying optical coherence tomography angiography in the study of the pathogenesis and antiangiogenic therapy of age-related macular dystrophy are discussed.

Keywords:

optical coherence tomography, angiography, retina, chorioid, sweep laser

Acknowledgements:

The authors are grateful to Candidate of Physical–Mathematical Sciences L. N. Soms for useful discussions and for help in preparing the manuscript for publication.

OCIS codes: 140.3070, 170.1020, 170.3890, 190.4970

References:

1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
2. M. Magdy, L. Mahmoud, and K. Hagar, “Imaging choroidal neovascular membrane using en face swept-source optical coherence tomography angiography,” Clin. Ophthalmol. 11, 1859–1869 (2017).
3. V. V. Tuchin, Handbook of Optical Biomedical Diagnostics: Methods, vol. 2 (SPIE Press, Bellingham, Wash., 2016).
4. A. A. Shpak, Optical Coherent Tomography: Problems and Solutions (Izd. Oftal’mologiya, Moscow, 2019).
5. Y. S. Astakhov and S. G. Belekhova, “Optical coherent tomography: how it all began and modern diagnostic possibilities of the method,” Oftalmol. Vedomosti 7(2), 60–68 (2014).
6. M. V. Melikhova and M. V. Gatsu, “Dome-shaped macula phenomenon,” Oftalmol. Vedomosti 11(1), 71–77 (2018).
7. O. A. Kiseleva, E. N. Iomdina, L. V. Yakubova, and D. D. Khoziev, “Cribriform plate in glaucoma: biomechanical features and possibilities of their clinical monitoring,” Ross. Oftalmol. Zh. 11(3), 76–83 (2018).
8. C. Or, A. S. Sabrosa, O. Sorour, M. Arya, and N. Waheed, “Use of OCTA, FA, and ultrawide-field imaging in quantifying retinal ischemia,” Asia-Pac. J. Ophthalmol. 7(1), 46–51 (2018).
9. A. S. G. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express 1(4), 1047–1059 (2010).
10. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
11. S. S. Gao, Y. Jia, M. Zhang, J. P. Su, G. Liu, T. S. Hwang, S. T. Bailey, and D. Huang, “Optical coherence tomography angiography,” Invest. Ophthalmol. Visual Sci. 57, OCT27–OCT36 (2016).
12. R. F. Spaide, “Volume-rendered angiographic and structural optical coherence tomography,” Retina 35(11), 2181–2187 (2015).
13. C. Chen and R. K. Wang, “Optical coherence tomography based angiography,” Biomed. Opt. Express 8(2), 1056–1082 (2017).
14. T. B. Shaimov, I. E. Panova, R. B. Shaimov, V. A. Shaimova, T. A. Shaimova, and A. V. Fomin, “Optical coherence of tomography-angiography in the diagnosis of neovascular form age-related macular degeneration,” Vestn. Oftal’mol. (5), 4–12 (2015).
15. S. N. Tultseva, Y. S. Astakhov, A. G. Rukhovets, and A. I. Titarenko, “Diagnostic value of OCT-angiography and regional hemodynamic assessment in patients with retinal vein occlusion,” Oftalmol. Vedomosti 10(2), 40–48 (2017).
16. M. A. Anikina, T. Y. Matnenko, and O. I. Lebedev, “Optical coherent tomography-angiography: a promising method in ophthalmological diagnosis,” Prakt. Med. 3(114), 7–10 (2018).
17. O. Tan, Y. Jia, E. Wei, and D. Huang, “Clinical applications of Doppler OCT and OCT angiography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds., (Springer, 2015), pp. 1413–1459.
18. A. Miere, H. Oubraham, F. Amoroso, P. Butori, P. Astroz, O. Semoun, E. Bruyere, A. Pedinielli, M. Addou-Regnard, C. Jung, S. Y. Cohen, and E. H. Souied, “Optical coherence tomography angiography to distinguish changes of choroidal neovascularization after antiVEGF therapy: monthly loading dose versus pro re nata regimen,” J. Ophthalmol. 2018, 3751702 (2018).
19. L. Golas, S. A. Schechet, D. Skondra, and S. M. Hariprasad, “Developments in intraoperative OCT and heads-up assisted surgical viewing,” Retinal Physician 15, 45–48 (2018).
20. C. Pfäffle, H. Spahr, D. Hillmann, H. Sudkamp, G. Feanke, P. Koch, and G. Hüttmann, “Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction,” Biomed. Opt. Express 8(3), 1499–1511 (2017).
21. R. Poddar, J. V. Migacz, D. M. Schwartz, J. S. Werner, and I. Gorczynska, “Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate,” J. Biomed. Opt. 22(10), 106018 (2017).
22. Z. Y. Alyab’eva, “New horizons of scanning-laser ophthalmoscopy,” Klin. Oftalmol. (1), 4 (2005).
23. C. Smith, “Basic confocal microscopy,” Curr. Protoc. Mol. Biol. 81, 14.11.1–14.11.18 (2008).
24. V. A. Serebryakov, É. V. Bo˘ıko, and A. V. Yan, Coherent Tomography in the Diagnosis of Ophthalmological Diseases (VMedA, St. Petersburg, 2013).
25. D. Buteikien, A. Paunksnis, V. Barzdžiukas, D. Žali ¯unien, J. V. Bal ˇci ¯unien, and D. Jegelevi ˇcius, “Correlations between digital planimetry and optical coherence tomography, confocal scanning laser ophthalmoscopy in assessment of optic disc parameters,” Medicina (Kaunas) 48(3), 150–158 (2012).
26. J. Cunha-Vaz and A. Koh, eds., Imaging Techniques, Vol. 10 of ESASO Course Series (Karger, 2018), pp. 1–18.

27. M. Kernt, U. C. Schaller, C. Stumpf, M. W. Ulbig, A. Kampik, and A. S. Neubauer, “Choroidal pigmented lesions imaged by ultrawidefield scanning laser ophthalmoscopy with two laser wavelengths (Optomap),” Clin. Ophthalmol. 4, 829–836 (2010).
28. A. G. Podoleanu, “Optical-coherence tomography,” Br. J. Radiol. 78, 976–988 (2005).
29. A. Maheshwari, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
30. J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT1–OCT13 (2016).
31. J. F. De Boer, R. Leetgeb, and M. Wolkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier-domain OCT,” Biomed. Opt. Express 8(7), 3248–3280 (2017).
32. A. L. Kal’yanov, V. V. Lychagov, D. V. Lyakin, O. A. Perepelitsyna, and V. P. Ryabukho, Optical Low-Coherence Interferometry and Tomography, V. P. Ryabukho, ed. (Saratov, 2009).
33. W. Drexler, “Ultrahigh-resolution and functional OCT,” in Light Source Technology & Applications (Medical University, Vienna, 2005).
34. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004).
35. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
36. Y. T. Mazurenko and G. V. Papajan, “Process generating images of internal structure of objects,” Patent RU02184347 (2002).
37. Y. T. Mazurenko and G. V. Papayan, “Spectral heterodyne tomography,” Opt. Spectrosc. 96(2), 268–274 (2004) [Opt. Spektrosk. 96(2), 324–331 (2004)].
38. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier-domain vs. time-domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
39. J. F. De Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
40. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
41. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
42. A. C. Sull, L. N. Vuong, V. J. Srinivasany, A. J. Witkin, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “The evolution of spectral-domain optical coherence tomography,” Retina Today, 39–44 (2008).
43. Y. Mazurenko, “Information aspects of optical coherence tomography,” Proc. SPIE 6162, 616201 (2006).
44. T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8(2), 828–859 (2017).
45. E. Götzinger, M. Pircher, R. A. Leitgeb, and S. K. Hitzenberger, “High-speed full-range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005).
46. A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1999).
47. A. B. Vakhtin, K. A. Peterson, W. R. Wood, and D. J. Kane, “Differential spectral interferometry: an imaging technique for biomedical applications,” Opt. Lett. 28(15), 1332–1334 (2003).
48. R. Poddar, J. V. Migacz, D. M. Schwartz, J. S. Werner, and I. Gorczynska, “Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate,” J. Biomed. Opt. 22(10), 106018 (2017).
49. O. P. Kocaoglu, T. L. Turner, Z. Liu, and D. T. Miller, “Adaptive optics optical coherence tomography at 1 MHz,” Biomed. Opt. Express 5(12), 4186 (2014).
50. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier-domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3227 (2006).
51. C. M. Eigenwillig, “New rapidly wavelength-swept light sources for optical coherence tomography and picosecond pulse generation,” Dissertation for the Faculty of Physics (Ludwig-Maximilians-Universität, München, Aug. 2012), p. 162.
52. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier-domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
53. C. Jun, M. Villiger, W. Oh, and B. E. Bouma, “All-fiber wavelength-swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
54. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
55. I. Gorczynska, J. V. Migacz, R. J. Zawadzki, A. G. Capps, and J. S. Werner, “Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid,” Biomed. Opt. Express 7(3), 911–942 (2016).
56. A.-H. Dhalla and J. A. Izatt, “Complete complex conjugate resolved heterodyne swept-source optical coherence tomography using a dispersive optical delay line,” Biomed. Opt. Express 2(5), 1218–1232 (2011).
57. A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express 3(3), 633–649 (2012).
58. I. Grulkowski, S. Manzanera, L. Cwiklinski, F. Sobczuk, K. Karnowski, and P. Artal, “Swept-source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye,” Optica 5(1), 52–59 (2018).
59. Y. K. Tao, S. K. Srivastava, and J. P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
60. A. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept-source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
61. OptoRes FDML-1060/1.5 MHz swept laser source, 2015, https://www.optores.com.
62. J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14(3), 0213144 (2019).
63. S. Tozburun, M. Siddiqu, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22(3), 3414–3424 (2014).
64. S. Tozburun, C. Blatter, M. Siddiqui, E. F. J. Meijer, and B. J. Vakoc, “Phase-stable Doppler OCT at 19 MHz using a stretched-pulse mode-locked laser,” Biomed. Opt. Express 9(3), 952–961 (2018).
65. R. Khazaeinezhad, M. Siddiqui, and C. B. J. Vakoc, “16-MHz wavelength-swept and wavelength-stepped laser architectures based on stretched-pulse active mode locking with a single continuously chirped fiber Bragg grating,” Opt. Lett. 42(10), 2046–2049 (2017).
66. Z. Wang, H. C. Lee, D. Vermeulen, L. Chen, T. Nielsen, S. Y. Park, A. Ghaemi, E. Swanson, C. Doerr, and J. Fujimoto, “Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection,” Biomed. Opt. Express 6(7), 2562–2574 (2015).
67. Carl Zeiss Meditec Inc., “Section 510(k),” Oct. 26, 2016, p. 7.
68. GOST 50723-94, “Laser Safety. General safety requirements for the development and operation of laser items,” 1996, http://docs.cntd.ru/document/gost-r-50723-94.
69. IEC, “Safety of laser products,” IEC 60825-1, 2014.

70. D. C. Sousa, “Optical coherence tomography angiography,” Eye Wiki, pp. 43–82.
71. V. A. Serebryakov, É. V. Bo˘ıko, and A. V. Yan, “Real-time opto-acoustic monitoring of the temperature of the retina during laser therapy,” J. Opt. Technol. 81(6), 312–321 (2014) [Opt. Zh. 81(6), 14–26 (2014)].
72. D. J. Coleman, R. H. Silverman, A. Chabi, M. Rondeau, K. K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmol. 111, 1344–1351 (2004).
73. R. H. Silverman, J. A. Ketterling, J. Mamou, and D. J. Coleman, “Improved high-resolution ultrasonic imaging of the eye,” Arch. Ophthalmol. 126(1), 94–97 (2008).
74. J. Meng and Z. Ding, “Optical Doppler tomography with short-time Fourier transform and Hilbert transform,” Proc. SPIE 6826, 682602 (2007).
75. R. K. Wang, “Optical microangiography: a label-free 3D imaging technology to visualize and quantify blood circulations within tissue beds in vivo,” IEEE J. Sel. Top. Quantum Electron. 16(3), 545–554 (2010).
76. D. Kim, Y. J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
77. Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1134–1142 (1999).
78. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
79. A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomech. Eng. 51(1), 186–190 (2004).
80. G. Liu and Z. Chen, “Phase-resolved Doppler optical coherence tomography,” in Selected Topics in Optical Coherence Tomography (2012), pp. 41–64.
81. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
82. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
83. S. Makita, T. Fabritiusa, and Y. Yasunoa, “Blood-flow imaging at deep posterior human eye using 1-μm spectral-domain optical coherence tomography,” Proc. SPIE 7168, 716808 (2009).
84. J. Zhang, J. S. Nelson, and Z. P. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
85. D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “Comparison of phase-shifting techniques for in vivo full-range, high-speed Fourier-domain optical coherence tomography,” J. Biomed. Opt. 15(5), 056011 (2010).
86. S. M. R. Motaghiannezam, D. Koos, and S. E. Fraser, “Differential phase-contrast, swept-source optical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization,” J. Biomed. Optics 17(2), 026011 (2012).
87. N. Choudhury, F. Chen, X. Shi, A. L. Nuttall, and R. K. Wang, “Volumetric imaging of blood flow within cochlea in gerbil in vivo,” IEEE J. Sel. Top. Quantum Electron. 16, 524–529 (2010).
88. A. Zhang, Q. Zhang, C. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
89. H. Ren, Y. Wang, J. S. Nelson, and Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chorioallantoic membrane,” Proc. SPIE 4956, 225–231 (2003).
90. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real-time strain-rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
91. R. Fonseca-Pinto, “A new tool for nonstationary and nonlinear signals: the Hilbert–Huang transform in biomedical applications,” in Biomedical Engineering Trends in Electronics, Communications and Software (2011), chap. 15, pp. 481–504.
92. Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27(2), 98–100 (2002).
93. R. K. Wang and H. Subhash, Optical Microangiography: Theory and Application (2012), chap. 10, pp. 197–258.
94. S. Huang, M. Shen, D. Zhu, Q. Chen, C. Shi, Z. Chen, and F. Lu, “In vivo imaging of retinal hemodynamics with OCT angiography and Doppler OCT,” Biomed. Opt. Express 7(2), 663–676 (2016).
95. D. L. Ruminski, D. Bukowska, and I. Gorczynska, “Angiogram visualization and total velocity blood-flow assessment based on intensity information analysis of OCT data,” Proc. SPIE 8213, 821306 (2012).
96. R. Reif and R. K. Wang, “Label-free imaging of blood-vessel morphology with capillary resolution using optical microangiography,” Quantum Imaging Med. Surg. 2(3), 207–212 (2012).
97. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
98. G. Liu, Y. Jia, A. D. Pechauer, R. ChandwaniI, and D. Huang, “Split-spectrum phase-gradient optical coherence tomography angiography,” Biomed. Opt. Express 7(8), 2943–2954 (2016). 
99. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood-flow imaging spectral-domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
100. R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. Wang, “Quantifying optical microangiography images obtained from a spectral-domain optical coherence tomography system,” Int. J. Biomed. Imaging 2012, 509783 (2012).
101. J. Xu, S. Song, Y. Li, and R. Wang, “Complex-based OCT angiography algorithm recovers microvascular information superior to amplitude- or phase-based algorithm in phase-stable systems,” Phys. Med. Biol. 63(1), 015023 (2018).
102. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
103. X.-X. Li, W. Wu, H. Zhou, J.-J. Deng, M.-Y. Zhao, T.-W. Qian, C. Yan, X. Xu, and S.-Q. Yu, “A quantitative comparison of five optical coherence tomography angiography systems in clinical performance,” Int. J. Ophthalmol. 11(11), 1784–1795 (2018).
104. M. R. Munk, H. Giannakaki-Zimmermann, L. Berger, W. Huf, A. Ebneter, S. Wolf, and M. S. Zinkernagel, “OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A devices,” PLOS ONE 12(5), e0177059 (2017).
105. E. D. Cole and J. S. Duker, “OCT technology: will we be ‘swept’ away?” Rev. Ophthalmol. XXIV(4), 85–89 (2017).
106. Q. Zhang, F. Zheng, E. H. Motulsky, G. Gregori, Z. Chu, C.-L. Chen, C. Li, L. de Sisternes, M. Durbin, P. J. Rosenfeld, and R. K. Wang, “A novel strategy for quantifying choriocapillaries flow voids using swept-source OCT angiography,” Invest. Ophthalmol. Vis. Sci. 59, 203–211 (2018).
107. R. Spaide, J. Klancnik, Jr., and M. J. Cooney, “Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
108. J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(42201) (2017).
109. R. F. Spaide and C. A. Curcio, “Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes,” JAMA Ophthalmol. 135, 259–262 (2017).

110. Carl Zeiss Meditec Inc. PLEX Elite 9000, https://www.zeiss.com.
111. J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultrawide-field retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
112. D. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269, 247–251 (2007).
113. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase-variance contrast with spectral-domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
114. Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
115. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
116. J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
117. I. Bussel, “Exploring the clinical utility of swept-source OCT,” Ophthalmol. Manage. Glaucoma Physician 21, 36–39 (2017).
118. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier-domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
119. A. Li, C. Du, and Y. Pan, “Volumetric absolute blood flow measurement with fully connected vasculature network using Doppler optical coherence tomography,” Proc. SPIE 10867, 21–54 (2019).
120. A. Shahlaee, M. Pefkianaki, J. Hsu, and A. C. Ho, “Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography,” Am. J. Ophthalmol. 161, 50–55 (2016).
121. R. Liu, J. Qin, and R. K. Wang, “Motion-contrast laser speckle imaging of microcirculation within tissue beds in vivo,” J. Biomed. Opt. 18(6), 060508 (2013).
122. M. Salas, W. Drexler, X. Levecq, B. Lamory, M. Ritter, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting,” Biomed. Opt. Express 7(5), 1783–1796 (2016).
123. M. Salas, M. Augustin, L. Ginner, A. Kumar, B. Baumann, R. Leitgeb, W. Drexler, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics,” Biomed. Opt. Express 8(1), 207–222 (2017).
124. “How to improve the early diagnostics of ophthalmic diseases?” Euronews, Nov. 19, 2018. https://www.euronews.com/2018/11/19/how-to-improve-the-early-diagnostics-of-ophthalmic-diseases.
125. A. J. Witkin, L. N. Vuong, V. J. Srinivasan, I. Gorczynska, E. Reichel, C. R. Baumal, A. Rogers, J. Schuman, J. G. Fujimoto, and J. S. Duker, “High-speed ultrahigh-resolution optical coherence tomography before and after ranibizumab for age-related macular degeneration,” Ophthalmol. 116(5), 956–963 (2009).
126. F. Zheng, Q. Zhang, E. H. Motulsky, J. R. Dias, C. Chen, Z. Chu, A. R. Miller, W. Feuer, G. Gregori, S. Kubach, M. K. Durbin, R. K. Wang, and P. J. Rosenfeld, “Comparison of neovascular lesion area measurements from different swept-source OCT angiographic scan patterns in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 58, 5098–5104 (2017).
127. A. S. Izma˘ılov, “New methods of diagnosis and treatment of age-related macular dystrophy,” Oftalmol. 7(3), 32–35 (2010).
128. E. H. Souied, A. Miere, Y. Cohen, O. Semoun, and G. Querques, “Optical coherence tomography angiography of fibrosis in age-related macular degeneration,” Dev. Ophthalmol. 56, 86–90 (2016).
129. J. Gong, S. Yu, Y. Gong, F. Wang, and X. Sun, “The diagnostic accuracy of optical coherence tomography angiography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography,” Ophthalmol. 2016, 7521478 (2016).
130. R. Spaide, “Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization,” Am. J. Ophthalmol. 160(1), 6–16 (2015).
131. K. Ratnayake, J. L. Payton, O. Lakmal, and A. Karunarathne, “Blue-light excited retinal intercepts cellular signaling,” Sci. Rep. 8, 10207 (2018).
132. V. A. Serebryakov, G. V. Papayan, Y. S. Astakhov, and A. Y. Ovnanyan, “Alternative approach to laser methods of treating vascular pathologies of the eye,” J. Opt. Technol. 81(11), 631–641 (2014) [Opt. Zh. 81(11), 15-30 (2014)].
133. D. Veritti, V. Sarao, and P. Lanzetta, “Update on combination therapy in wet age-related macular degeneration,” Expert Rev. Ophthalmol. 5(5), 681–688 (2010).
134. A. Mariampillai, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
135. A. Koh, W. K. Lee, L.-J. Chen, S.-J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
136. E. Rishi, P. Rishi, V. Sharma, V. Koundanya, and R. Athanikar, “Long-term outcomes of combination photodynamic therapy with ranibizumab or bevacizumab for treatment of wet age-related macular degeneration,” Oman J. Ophthalmol. 9(2), 87–92 (2016).
137. S. N. Tul’tseva, Y. S. Astakhov, P. A. Nechiporenko, and A. Y. Ovnanyan, “Wide-field fluorescence angiography in occlusions of the veins of the retina: a new contribution to known disease,” in Crucial Problems of Laser Medicine, N. N. Petrishcheva, ed. (St. Petersburg, 2016), pp. 36–46.
138. S. R. Sing and J. C. Ani, “Decoding EVEREST II and PLANET,” Retinal Physician 15, 40, 42, 61 (2018).
139. A. Ishibazawa, N. Mehta, O. Sorour, P. Braun, S. Martin, A. Y. Alibhai, A. Saifuddin, M. Arya, C. R. Baumal, J. S. Duker, and N. K. Waheed, “Accuracy and reliability in differentiating retinal arteries and veins using wide-field en face OCT angiography,” Trans. Vis. Sci Tech. 8(3), 60 (2019).
140. A. Darwish, “OCT angiography for the evaluation of wet age-related macular degeneration,” EC Ophthalmol. 6(1), 6–18 (2017).