DOI: 10.17586/1023-5086-2020-87-02-36-43
УДК: 535-4
Statistical analysis of the data of highly sensitive laser polarization-optical probing of magnetic nanofluids
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Фофанов Я.А., Манойлов В.В., Заруцкий И.В., Курапцев А.С. Статистический анализ данных высокочувствительного лазерного поляризационно-оптического зондирования магнитных наножидкостей // Оптический журнал. 2020. Т. 87. № 2. С. 36–43. http://doi.org/10.17586/1023-5086-2020-87-02-36-43
Fofanov Ya.A., Manoylov V.V., Zarutskiy I.V., Kuraptsev A.S. Statistical analysis of the data of highly sensitive laser polarization-optical probing of magnetic nanofluids [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 2. P. 36–43. http://doi.org/10.17586/1023-5086-2020-87-02-36-43
Ya. A. Fofanov, V. V. Manoĭlov, I. V. Zarutskiĭ, and A. S. Kuraptsev, "Statistical analysis of the data of highly sensitive laser polarization-optical probing of magnetic nanofluids," Journal of Optical Technology. 87(2), 94-99 (2020). https://doi.org/10.1364/JOT.87.000094
Data processing algorithms related to the highly sensitive laser probing of magnetic nanofluids over a wide range of concentrations were developed in this study. An approximation of the polarization magneto-optical responses based on analytical dependences that result from the model of orientational ordering of particles in an external magnetic field was conducted. The developed methods for a quantitative polarization-optical analysis and the proposed techniques and methods used for statistical data analysis form the basics of laser polarization-optical nanodiagnostics (quantitative characterization) of magnetic nanofluids.
laser, highly sensitive laser probing of substance, magnetic nanofluids, approximation of experimental data, laser polarization-optical nanodiagnostics
Acknowledgements:This paper was prepared as part of State Assignment No. 075-00780-19-02 (topic No. 0074-2019-0007) of the Ministry of Education and Science of the Russian Federation.
OCIS codes: 200.3050, 120.0120, 230.0250, 140.0140, 260.5430, 120.4290, 160.4236, 210.3820, 280.4788
References:1. J. Badoz, B. M. Billardon, J. C. Canit, and M. F. J. Russel, “Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator,” J. Optics (Paris) 8(6), 373–384 (1977).
2. I. M. Sokolov and Ya. A. Fofanov, “Investigations of the small birefringence of transparent objects by strong phase modulation of probing laser radiation,” J. Opt. Soc. Am. A. 12(7), 1579–1588 (1995).
3. Ya. A. Fofanov, “Nonlinear and fluctuation phenomena under conditions of strong selective reflection in inclined geometry,” in Advances in Optoelectronics Research (Nova Science Publishers, New York, 2014), pp. 75–114.
4. Ya. A. Fofanov, I. V. Pleshakov, and Yu. I. Kuzmin, “Laser polarization-optical detection of the process of magnetization of a magnetically ordered crystal,” J. Opt. Technol. 80(1), 64–67 (2013) [Opt. Zh. 80(1), 88–93 (2013)].
5. Ya. A. Fofanov, “Threshold sensitivity in optical measurements with phase modulation,” Proc. SPIE 1811, 413–414 (1992).
6. C. Scherer and A. M. Figueiredo Neto, “Ferrofluids: properties and applications,” Braz. J. Phys. 35(3A), 718–727 (2005).
7. Y. Zhao, Y. Zhang, R. Lv, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
8. P. M. Agruzov, I. V. Pleshakov, E. E. Bibik, and A. V. Shamray, “Magneto-optic effects in silica core microstructured fibres with a ferrofluidic cladding,” Appl. Phys. Lett. 104(7), 071108 (2014).
9. A. Bitar, C. Kaewsaneha, M. M. Eissa, T. Jamshaid, P. Tangboriboonrat, D. Polpanich, and A. Elaissari, “Ferrofluids: from preparation to biomedical applications,” J. Colloid Sci. Biotechnol. 3(1), 3–18 (2014).
10. P. M. Agruzov, I. V. Pleshakov, E. E. Bibik, S. I. Stepanov, and A. V. Shamrai, “Transient magneto-optic effects in ferrofluid-filled microstructured fibers in pulsed magnetic field,” Europhys. Lett. 111(5), 57003 (2015).
11. E. K. Nepomnyashchaya, A. V. Prokofiev, E. N. Velichko, I. V. Pleshakov, and Yu. I. Kuzmin, “Investigation of magneto-optical properties of ferrofluids by laser light scattering techniques,” J. Magn. Magn. Mater. 431, 24–26 (2017).
12. Ya. A. Fofanov, I. V. Pleshakov, A. V. Prokof’ev, and E. E. Bibik, “Investigation of polarization magnetooptic responses of a low-concentration ferrofluid,” Tech. Phys. Lett. 42(10), 1054–1056 (2016) [Pis’ma Zh. Tekh. Fiz. 42(20), 66–72 (2016)].
13. Ya. Fofanov, I. Sokolov, I. Pleshakov, V. Vetrov, A. Prokofiev, A. Kuraptsev, and E. Bibik, “On the criteria for strong and weak polarization responses of ordered objects and systems,” EPJ Web Conf. 161, 01003 (2017).
14. Ya. A. Fofanov, V. V. Mano˘ılov, I. V. Zarutskiy, and B. V. Bardin, “On the similarity of the polarization-optical responses of magnetic nanofluids. Part 1. Approximation for weak fields,” Nauchn. Priborostr. 28(1), 45–52 (2018).
15. Ya. A. Fofanov, V. V. Mano˘ılov, I. V. Zarutskiy, and B. V. Bardin, “On the similarity of the polarization-optical responses of magnetic nanofluids. Part 2. Estimation of the statistical significance of regression coefficients,” Nauchn. Priborostr. 28(2), 54–62 (2018).
16. A. R. Zakinyan and Yu. I. Dikansky, “Effect of microdrops deformation on electrical and rheological properties of magnetic fluid emulsion,” J. Magn. Magn. Mater. 431, 103–106 (2017).
17. A. V. Prokofyev, Ya. A. Fofanov, I. V. Pleshakov, and E. E. Bibik, “Laser polarization-optical observation of agglomeration of magnetic nanoparticles in a liquid medium,” Nauchn. Priborostr. 27(4), 3–7 (2017).
18. Yu. N. Skibin, V. V. Chekanov, and Yu. L. Ra˘ıkher, “Birefringence in magnetic fluid,” Zh. Eksp. Teor. Fiz. 72(3), 949–955 (1977).
19. H. W. Davis and J. P. Llewellyn, “Magnetic birefringence of ferrofluids: I. Estimation of particle size,” J. Phys. D: Appl. Phys. 12(2), 311–319 (1979).
20. P. C. Scholten, “The origin of magnetic birefringence and dichroism in magnetic fluids,” IEEE Trans. Magn. 16(2), 221–225 (1980).
21. Ya. Fofanov, V. Vetrov, and B. Ignatenkov, “Laser polarization-optical sounding of optical crystals and ceramics,” in International Conference on Laser Optics (2018), paper 406.