DOI: 10.17586/1023-5086-2020-87-02-50-55
УДК: 535.37, 621.371.378
Thermo-optic properties of diode-pumped Nd:YAG lasers with ceramic and crystalline active elements
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Рябцев Г.И., Богданович М.В., Григорьев А.В., Дудиков В.Н., Лепченков К.В., Рябцев А.Г., Шпак П.В., Щемелев М.А. Термооптические характеристики диодно-накачиваемых Nd:YAG лазеров с керамическими и кристаллическими активными элементами // Оптический журнал. 2020. Т. 87. № 2. С. 50–55. http://doi.org/10.17586/1023-5086-2020-87-02-50-55
Ryabtsev G.I., Bogdanovich M.V., Grigoriyev A.V., Dudikov V.N., Lepchenkov K.V., Ryabtsev A.G., Shpak P.V., Shchemelev M.A. Thermo-optic properties of diode-pumped Nd:YAG lasers with ceramic and crystalline active elements [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 2. P. 50–55. http://doi.org/10.17586/1023-5086-2020-87-02-50-55
G. I. Ryabtsev, M. V. Bogdanovich, A. V. Grigor’ev, V. N. Dudikov, K. V. Lepchenkov, A. G. Ryabtsev, P. V. Shpak, and M. A. Shchemelev, "Thermo-optic properties of diode-pumped Nd:YAG lasers with ceramic and crystalline active elements," Journal of Optical Technology. 87(2), 105-109 (2020). https://doi.org/10.1364/JOT.87.000105
We studied the thermo-optic properties of diode-pumped high-power pulsed ceramic- and crystalline-active-element Nd:YAG lasers with neodymium ion concentrations of 2.0 and 1.1 at. %, respectively. We showed that under comparable excitation conditions, the mean heat generation from the ceramic Nd:YAG active element is 30%–35% higher than that from the crystalline Nd:YAG active element. The difference in thermal power is apparent from the energy of the polarized output laser pulses as a function of frequency. A quarter-wave plate partially compensates for thermally induced birefringence. This technique was found to be effective up to maximum frequencies of 50 and 70 Hz, for the ceramic and crystalline active elements, respectively.
Nd:YAG laser, transverse diode pumping, ceramics, crystalline active media, thermo-optic properties
OCIS codes: 140.3480, 140.3530, 140.3580, 010.3640
References:1. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36, 397–429 (2006).
2. S. M. Vatnik, V. V. Osipov, I. A. Vedin, and P. F. Kurbatov, “Investigation of lasing characteristics of 1% Nd:YAG laser ceramics,” Quantum Electron. 43(3), 288–290 (2013) [Kvant. Elektron. 43(3), 288–290 (2013)].
3. A. Goldstein and A. Krell, “Transparent ceramics at 50: progress made and further prospects,” J. Am. Ceram. Soc. 99(10), 3173–3197 (2016).
4. V. V. Bezotosnyi, V. V. Balashov, V. D. Bulaev, A. A. Kaminskii, A. Y. Kanaev, V. B. Kravchenko, A. Kiselev, Y. L. Kopylov, A. L. Koromyslov, O. N. Krokhin, K. V. Lopukhin, S. L. Lysenko, M. A. Pankov, K. A. Polevov, Y. M. Popov, E. A. Cheshevand, and I. M. Tupitsyn, “Lasing characteristic of new Russian laser ceramics,” Quantum Electron. 48, 802–806 (2018) [Kvant. Elektron. 48(9), 802–806 (2018)].
5. I. L. Snetkov, O. V. Palashov, V. V. Osipov, I. B. Mukhin, R. N. Maksimov, V. A. Shitov, and K. E. Luk’yashin, “Continuous-wave 80-W lasing in Yb:YAG ceramics,” Quantum Electron. 48, 683–685 (2018) [Kvant. Elektron. 48(8), 683–685].
6. A. Ikesue and Y. L. Aung, “Origin and future of polycrystalline ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–7 (2018).
7. J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, and J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
8. A. Ikesue, Y. L. Aung, and V. Lupei, Ceramic Lasers (Cambridge University Press, Cambridge, 2013).
9. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3 Al5 O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
10. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27(4), 234–236 (2002).
11. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27, 716–718 (2002).
12. M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
13. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express 13(16), 5983–5987 (2005).
14. I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Properties of a thermal lens in laser ceramics,” Quantum Electron. 37(7), 633–638 (2007).
15. A. V. Mezenov, L. N. Some, and A. I. Stepanov, Thermal Optics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).
16. A. A. Mak, L. N. Some, V. A. Fromzel, and V. E. Yashin, Neodymium-Glass Lasers (Nauka, Moscow, 1990).
17. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1995).
18. W. A. Clarkson, N. S. Felgate, and D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24(12), 820–822 (1999).