DOI: 10.17586/1023-5086-2020-87-04-11-18
УДК: 621.382
Mathematical model of an acousto-optic switch for fiber-optic communication lines
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Мухамадиев А.А. Математическая модель акустооптического коммутатора волоконно-оптических линий связи // Оптический журнал. 2020. Т. 87. № 4. С. 11–18. http://doi.org/10.17586/1023-5086-2020-87-04-11-18
Mukhamadiev A.A. Mathematical model of an acousto-optic switch for fiber-optic communication lines [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 4. P. 11–18. http://doi.org/10.17586/1023-5086-2020-87-04-11-18
A. A. Mukhamadiev, "Mathematical model of an acousto-optic switch for fiber-optic communication lines," Journal of Optical Technology. 87(4), 199-204 (2020). https://doi.org/10.1364/JOT.87.000199
In this study, the characteristics of optical radiation transmitted through the elements of a fiber-optic acousto-optic (AO) switch were investigated. The transmission efficiency of the optical signal and the insertion losses were determined. We proposed a mathematical model of an AO switch for fiber-optic communication lines; the model describes the propagation of an optical signal as the transmission of Gaussian radiation between the input and output fibers. The designed mathematical model enables the determination of the amplitudes, intensities, and power ratios of the signals in the input and output optical fibers, as well as the propagation pattern of the optical radiation and the radiation attenuation by the optical elements. Moreover, it allows the estimation of the optical signal transmission efficiency and the insertion losses.
mathematical model, acousto-optic switch, acousto-optic deflector, fiber-optic communication lines, diffraction
OCIS codes: 070.1060, 230.1040
References:1. S. Antonov, A. Vainer, V. Proklov, and Y. Rezvov, “Switch multiplexer of fiber-optic channels based on multibeam acousto-optic diffraction,” Appl. Opt. 48(7), C171–C181 (2009).
2. G. S. Gaivoronskaya and A. V. Ryabtsov, “Application specifics of optical switches in modern networks,” in ITHEA (2011), pp. 169–181.
3. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-optics (Radio i Svyaz’, Moscow, 1985).
4. V. M. Kotov, Acousto-optics: Bragg Diffraction of Multicolored Radiation (Yanus-K, Moscow, 2016).
5. A. I. Davydov and A. A. Mukhamadiev, “Optical system modeling of acousto-optic switching transducer for information-measuring and telecommunication systems,” Elektrotekh. Inf. Komplesky Sist. 9(4), 135–139 (2013).
6. A. I. Davydov, A. A. Mukhamadiev, and M. A. Urakseev, “Acousto-optical switches of information-measuring systems,” Pribory 9, 1–7 (2012).
7. A. V. Vayner, S. N. Antonov, and V. V. Proklov, Fiber-Optic Switch-Multiplexer Based on Acousto-optic Modulators (Institute of Radio Engineering and Electronics of RAS, Moscow, 2007).
8. V. A. Shul’gin, “Acousto-optic fiber-optic switch without polarization dependence,” Russian patent 2343517 (2009).
9. G. Ivtsenkov, L. Magdich, and N. Solodovnikov, “Acousto-optic switch for fiber optic lines,” US patent 6539132 (2003).
10. G. Ivtsenkov and V. Pachkov, Acousto-optic Tutorial (Light Management Group Inc., Canada, 2002).
11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New Jersey, 1991).
12. A. Marincic, “Huygens-Kirchhoff’s theory in calculation of elliptical Gaussian beam propagation through a lens,” Microwave Rev. 8(1), 2–5 (2002).
13. V. I. Kochubei, Polarization Spectroscopy (Novii Veter, Saratov, 2009).
14. A. N. Matveev, Optics (Vysshaya Shkola, Moscow, 1985).
15. L. N. Magdich and V. Y. Molchanov, Acousto-optic Devices and Applications (Soviet Radio, Moscow, 1978).
16. A. E. Siegman, Lasers (University Science Books, Mill Valley, 1986).