DOI: 10.17586/1023-5086-2020-87-04-03-10
УДК: 535.4
Mathematical model for determining the microporosity of materials using a fiber optic sensor with a distributed Bragg grating
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Паньков А.А. Математическая модель диагностирования микропористости материалов оптоволоконным датчиком с распределённой брэгговской решёткой // Оптический журнал. 2020. Т. 87. № 4. С. 3–10. http://doi.org/10.17586/1023-5086-2020-87-04-03-10
Pankov A.A. Mathematical model for determining the microporosity of materials using a fiber optic sensor with a distributed Bragg grating [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 4. P. 3–10. http://doi.org/10.17586/1023-5086-2020-87-04-03-10
A. A. Pan’kov, "Mathematical model for determining the microporosity of materials using a fiber optic sensor with a distributed Bragg grating," Journal of Optical Technology. 87(4), 193-198 (2020). https://doi.org/10.1364/JOT.87.000193
A mathematical model has been developed for determining the geometric characteristics of porosity in deformable polymeric materials, using an optical fiber sensor with a distributed Bragg grating and based on the measurement of reflectance spectra that are part of the Fredholm integral equation of the first kind. The solution of this equation is the sought axial strain probability density function along the sensitive portion of the optical fiber with a Bragg grating. The results of a numerical simulation to obtain the geometric characteristics of porosity are presented: the relative volumetric concentration of spherical pores and the minimum guaranteed interlayer between pores located in a homogeneous elastic isotropic material under the influence of external hydrostatic stress. It was revealed that the porosity characteristics can be obtained from the density function of the strain distribution along the sensitive portion of the fiber with the Bragg grating, which was obtained from the solution of the Fredholm integral equation based on the measured spectra of reflection coefficients of the fiber optic sensor.
fiber optics, Bragg grating, distributed sensor, deformation determination, Fredholm integral equation, numerical simulation
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (19-41-590010).
OCIS codes: 050.1950, 050.2770
References:1. T. Okosi, Fiber-Optic Sensors (Energatomizdat, 1990).
2. A. Guemes, A. Fernandez-Lopez, and B. Soller, “Optical fiber distributed sensing—physical principles and applications,” Struct. Health Monit. 9(3), 233–245 (2010).
3. R. Suresh, S. C. Tjin, and J. Hao, “Fiber Bragg grating,” in Smart Materials in Structural Health Monitoring, Control and Biomechanics (Springer, Berlin, 2012), pp. 413–439.
4. M. Prabhugoud and K. Peters, “Efficient simulation of Bragg grating sensors for implementation to damage identification in composites,” Smart Mater. Struct. 12(6), 914–924 (2003).
5. S. V. Varzhel’, Fiber Bragg Gratings (ITMO University, 2015).
6. S. M. Popov, A. A. Fotiadi, and Y. K. Chamorovski˘ı, “Fiber optic lasers with resonators made out of fiber optics with a continuous Bragg grating,” in Special Edition of “Photon-Express” Science: Abstracts of the All-Russia National Conference on Fiber Optics, Perm’, Russia, 2015, pp. 57–58.
7. A. V. Burdin, A. A. Vasilets, V. A. Burdin, and O. G. Morozov, “Distributed sensor on multimode optical fibers supplemented with a Bragg fiber grating operating in a low-mode signal transmission mode,” in Collection of Abstracts of the 1st All-Russia Scientific and Applied Conference “Optical Reflectometry” (2016), pp. 25–26.
8. S. M. Popov, O. V. Butov, V. V. Voloshin, I. L. Vorob’ev, M. Y. Vyatkin, A. O. Kolosovski˘ı, and Y. K. Chamorovski˘ı, “OFTD reflectometry of optical fibers with a distributed Bragg type reflector,” in Collection of Abstracts of the 1st All-Russia Scientific and Applied Conference “Optical Reflectometry” (2016), pp. 36–38.
9. S. S. Yakushin, A. V. Dostovalov, A. A. Wol’f, A. V. Parygin, and S. A. Babin, “Measurement of the magnitude and position of point temperature effects on long FBGs,” in Collection of Abstracts of the 1st All-Russia Scientific and Applied Conference “Optical Reflectometry” (2016), pp. 39–40.
10. J. Zhang, “Study of a novel distributed vibration sensing system based on weak fiber Bragg gratings,” J. Opt. Technol. 85(7), 437–443 (2018) [Opt. Zh. 85(7), 76–83 (2018)].
11. A. P. Ovvyan, “Calculation of homogeneous and heterogeneous Bragg fiber gratings,” Molodezhnoi Nauchno-Tekh. Vestn. (6) ( 2012).
12. Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(1), 70–72 (2011).
13. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
14. M. A. Zuev, V. V. Makhsidov, M. Y. Fedotov, and A. M. Shienok, “On the issue of optical fiber integration in PCM and measurement of material strain using fiber Bragg gratings,” Mekh. Kompoz. Mater. Konstr. 20(4), 568–574 (2014).
15. E. N. Kablov, D. V. Sivakov, I. N. Gulyaev, K. V. Sorokin, M. Y. Fedotov, E. M. Dianov, S. A. Vasiliev, and O. I. Medvedkov, “The use of optical fiber as strain gauges in polymer composite materials,” Vse Mater. 3, 10–15 (2010).
16. I. G. Na˘ımushin, N. A. Trufanov, and I. N. Shardakov, “Numerical analysis of strain processes in a fiber optic sensor,” Vestn. Permsk. Nats. Issled. Politekh. Univ.: Mekh. 1, 104–116 (2012).
17. A. N. Anoshkin, A. A. Voronkov, N. A. Kosheleva, V. P. Matveekno, G. S. Serovaev, E. M. Spaskov, I. N. Shardakov, and G. S. Shipunov, “Measurement of inhomogeneous strain fields embedded in a polymer composite material by fiber optic sensors,” Mekh. Tverd. Tela 5, pp. 42–51 (2016).
18. V. P. Matveenko, I. N. Shardakov, and N. A. Kosheleva, “Evaluation of technological strains in polymer composite samples based on the use of embedded fiber-optic strain gauges,” in Abstracts of XX Winter School on Continuum Mechanics, Perm’, Russia, 2017, p. 219.
19. A. A. Pan’kov, “Mathematical model for diagnosing strains by an optical fiber sensor with a distributed Bragg grating according to the solution of a Fredholm integral equation,” Mech. Compo. Mater. 54(4), 513–522 (2018).
20. A. A. Pan’kov, “Fiber-optic pressure sensor,” Russian patent 2630537 (2016).
21. A. A. Pan’kov, “Fiber optic volumetric stress sensor,” Russian patent 2643692 (2017).
22. A. A. Pan’kov, “Piezoelectroluminescent fiber-optic sensors for temperature and strain fields,” Sens. Actuators A 288, 171–176 (2019).
23. A. A. Pan’kov, “Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites,” Mech. Compos. Mater. 53(2), 229–242 (2017).
24. A. A. Pan’kov, “A piezoelectroluminescent fiber-optical sensor for diagnostics of the 3D stress state in composite structures,” Mech. Compos. Mater. 54(2), 155–164 (2018).
25. A. A. Pan’kov, “Resonant diagnostics of temperature distribution by the piezo-electro-luminescent fiber-optical sensor according to the solution of the Fredholm integral equation,” PNRPU Mech. Bull. 2, 72–82 (2018).
26. R. Kristensen, Introduction to the Mechanics of Composites (Mir, 1982).
27. B. E. Pobedrya, Lectures on Tensor Analysis (Lomonosov Moscow State University, 1986).
28. A. A. Pan’kov, Statistical Mechanics of Piezocomposites (Perm National Research Polytechnic University, 2009).