DOI: 10.17586/1023-5086-2020-87-04-36-43
УДК: 681.786.42
Development of an athermalized objective for a system for monitoring large objects
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Миннигазимов Р.И., Митрофанов С.С. Разработка атермализованного объектива для системы контроля крупногабаритных объектов // Оптический журнал. 2020. Т. 87. № 4. С. 36–43. http://doi.org/10.17586/1023-5086-2020-87-04-36-43
Minnigazimov R.I., Mitrofanov S.S. Development of an athermalized objective for a system for monitoring large objects [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 4. P. 36–43. http://doi.org/10.17586/1023-5086-2020-87-04-36-43
R. I. Minnigazimov and S. S. Mitrofanov, "Development of an athermalized objective for a system for monitoring large objects," Journal of Optical Technology. 87(4), 218-223 (2020). https://doi.org/10.1364/JOT.87.000218
One of the problems in designing instrumentation systems operating over a wide temperature range is considered in this study, i.e., the prevention of thermal defocusing of the optical components in the system under environmental influence. Several approaches can be used to achieve athermalization. Some of them compensate for thermal defocusing, while others compensate for the deformation and change in optical and structural parameters owing to changes in temperature. Methods from both groups are applied in this study to ensure a high degree of athermalization. The design and development of an athermalized optical system comprising an objective and a photodetector in a single housing is conducted to create an instrument to monitor displacements in hydrodynamic structures operating over a wide temperature range.
objective athermalization, instrumentation systems, optical fabrication, triangulation, position control, hydrotechnical constructions
OCIS codes: 220.4610
References:1. Federal law No. 117-FZ, “On the safety of hydrotechnical structures,” http://www.consultant.ru/document/cons_doc_LAW_15265/.
2. A. S. Burkov and S. S. Mitrofanov, “Possibility of creating an automated device to monitor planimetric displacements of the Weir body,” Sovrem. Probl. Nauki Obraz. 1 (2015).
3. A. N. Baibakov, V. I. Ladygin, A. I. Pastushenko, S. V. Plotnikov, N. T. Tukubaev, and S. P. Yunoshev, “Laser triangulation position sensors in industrial inspection and diagnostics systems,” Avtometriya 40(2), 105–113 (2004).
4. S. V. Mikhlyaev, “Analysis of optical triangulation systems for measuring mirror surface profiles,” Avtometriya 41(4), 78–91 (2005).
5. S. L. Pogorelskiy and A. A. Shilin, “Passive athermalization of compact optical systems for the longwave IR-range,” Izv. Tul’sk. Gos. Univ. Tekh. Nauki 7, 196–201 (2014).
6. V. M. Tyagur, O. K. Kucherenko, and A. V. Murav’ev, “Passive optical athermalization of an IR three-lens achromat,” J. Opt. Technol. 81(4), 199–203 (2014) [Opt. Zh. 81(4), 42–47 (2014)].
7. G. E. Romanova and G. Pys’, “Research of aberration properties and the passive athermalization possibility of optical systems workingwithin a spectral range of 8–12 μm,” Interekspo Geo-Sibir’ 5(2), 10–17 (2015).
8. D. Vukobratovich, Optomechanical Design Principles (CRC Press, 1999).
9. M. M. Mordasov, A. P. Savenkov, M. E. Safonova, and V. A. Sychev, “Noncontact triangular measurement of the distance to mirror surfaces,” Avtometriya 54(1), 69–75 (2018).
10. S. M. Latyev, Design of Precise Optical Devices (Politekhnika, St. Petersburg, 2007).
11. GOST R 53340-2009, “Geodetic instruments. General specifications” (Izdatel’stvo Standartov, Moscow, 2009).