DOI: 10.17586/1023-5086-2020-87-04-44-51
High-precision autofocus using double wedge splitter
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Yue Weng, Wenbo Jing, Bingkun Huang, Hongyang Yu, Wenjun He High-precision autofocus using double wedge splitter (Высокоточная автофокусировка с использованием двойного клиновидного светоделителя) [на англ. яз.] // Оптический журнал. 2020. Т. 87. № 4. С. 44–51. http://doi.org/10.17586/1023-5086-2020-87-04-44-51
Yue Weng, Wenbo Jing, Bingkun Huang, Hongyang Yu, Wenjun He High-precision autofocus using double wedge splitter (Высокоточная автофокусировка с использованием двойного клиновидного светоделителя) [in English] // Opticheskii Zhurnal. 2020. V. 87. № 4. P. 44–51. http://doi.org/10.17586/1023-5086-2020-87-04-44-51
Yue Weng, Wenbo Jing, Bingkun Huang, Hongyang Yu, and Wenjun He, "High-precision autofocus using a double wedge splitter," Journal of Optical Technology. 87(4), 224-229 (2020). https://doi.org/10.1364/JOT.87.000224
We present an autofocus technique that combines focusing technology by using double wedge splitter and computer image processing technology in order to achieve high-precision focusing. The focusing technique we proposed uses a cooperation target (a ring object) as an imaging object. The ring image is divided into two half-ring images by using double wedge splitter, and extract their edge information for curve fitting to obtain the center of curvature of the two half rings, so we can calculate the deviation distance between the two half-ring images. The control system uses the deviation distance as feedback, and the closed-loop real-time adjusts the relative position of the secondary imaging system and the double wedge splitter so that the deviation distance is the smallest, and the defocusing amount is also the smallest now. In this paper, we propose the optical system model, analyze the algorithm flow in details, and verify the feasibility of the focusing method by experiments. The results show that this focusing method has the advantages of high focusing accuracy, easy operation. And the defocusing amount of this technology is within 10 μm.
autofocus, double wedge splitter image, computer aided alignment, high precision
Acknowledgements:This work was supported by Jilin Province Science and Technology Development Plan Project (No.20160204009GX, No.20170204014GX) and Ministry of Science and Technology Project (2018YFB1107600).
OCIS codes: 260.5950, 120.0120, 080.0080
References:1. Zhou L., Liu Z.H., Shan Q.S., She W.J. Measurement of the object defocus with extended depth-of-field imaging system // Acta Photon. Sin. V. 47. № 10. P. 80–87.
2. Jiang Z.W., Yan Y., Li Y., Bi Y.F. Wide-range and high-precision microscopic focusing system for laser-induced breakdown spectroscopy // Acta Opt. Sin. V. 38. № 12. P. 232–239.
3. Xiao Z.J., Zhu H.B., Xu Z.G. Based on image autocollimation automatic focus technology // Acta Photon. Sin. V. 45. № 10. P. 47–51.
4. Zhou J.F., Zhai L.P., Zhou G., Leng X., Chen X.H. Autofocus method of aerial imaging device // Acta Opt. Sin. V. 30. № 1. P. 105–108.
5. Yousefi S., Rahman M., Kehtarnavaz N. A new auto-focus sharpness function for digital and smart-phone cameras // ICCE. Las Vegas, USA. 2011. P. 1003–1009.
6. You Y.H., Liu T., Liu J.W. Survey of the auto-focus methods based on image processing // Laser & Infrared. V. 43. № 2. P. 132–136.
7. Sun J., Yuan Y.H., Wang C.Y. Comparison and analysis of algorithms for digital image processing in autofocusing criterion // Acta Opt. Sin. V. 27. № 1. P. 35–39.
8. Wang Y.R., Feng H.J., Xu Z.H., Chen Y.T. Autofocus evaluation function based on saturate pixels removing // Acta Opt. Sin. V. 36. № 12. P. 81–88.
9. Amin M.J., Riza N.A. Active depth from defocus system using coherent illumination and a no moving parts camera // Opt. Commun. V. 359. P. 135–145.
10. Masuyama H., Kawasaki H., Furukawa R. Depth from projector’s defocus based on multiple focus pattern projection // IPSJ T. on CVA. V. 6. P. 88–92.
11. Joseph Raj A.N., Staunton R.C. Rational filter design for depth from defocus // Pattern Recogn. V. 45. № 1. P. 198–207.
12. Rohou A., Grigorieff N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs // J. Struct. Biol. V. 192. № 2. P. 216–221.
13. Moeller M., Benning M., Schönlieb C., Cremers D. Variational depth from focus reconstruction // IEEE T. Image Process. V. 24. № 12. P. 5369–5378.
14. Pinkard H., Phillips Z., Babakhani A., Fletcher D.A., Waller L. Deep learning for single-shot autofocus microscopy // Optica. V. 6. № 6. P. 794–797.
15. Liu Y.L., Xu Q.S. Design of a flexure-based auto-focusing device for amicroscope // Int. J. Precis. Eng. Man. V. 16. № 11. P. 2271–2279.
16. Zhang Y.H., Zhao G.N., Zhang Z.H., Gu Y.M. Accurate focusing of non-mydriatic fundus camera // Opt. Precision Eng. V. 17. № 5. P. 1014–1019.
17. Grossmann P. Depth from focus // Pattern Recogn. Lett. V. 5. № 1. P. 63–69.
18. Canny J. A сomputational approach to edge detection // IEEE T. Pattern Anal. V. 8. № 6. P. 679–698.
19. Gander W., Golub G.H., Strebel R. Least-squares fitting of circles and ellipses // BIT. V. 34. № 4. P. 558–578.