ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-04-78-84

УДК: 535.42

Using the Cornu spiral to analyze the energy flux density of electromagnetic radiation in the geometric shadow cast by a protective shield

For Russian citation (Opticheskii Zhurnal):

Страхов С.Ю., Матвеев С.А., Сотникова Н.В. Применение спирали Корню для анализа плотности потока энергии электромагнитного излучения в области геометрической тени при проектировании защитных экранов  // Оптический журнал. 2020. Т. 87. № 4. С. 78–84. http://doi.org/10.17586/1023-5086-2020-87-04-78-84

 

Strakhov S.Yu., Matveev S.A., Sotnikova N.V. Using the Cornu spiral to analyze the energy flux density of electromagnetic radiation in the geometric shadow cast by a protective shield [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 4. P. 78–84. http://doi.org/10.17586/1023-5086-2020-87-04-78-84

For citation (Journal of Optical Technology):

S. Yu. Strakhov, S. A. Matveev, and N. V. Sotnikova, "Using the Cornu spiral to analyze the energy flux density of electromagnetic radiation in the geometric shadow cast by a protective shield," Journal of Optical Technology. 87(4), 250-254 (2020). https://doi.org/10.1364/JOT.87.000250

Abstract:

This paper discusses the effect of edge diffraction on radiation intensity in the projected geometric shadow of a protective shield. We also discuss the use of the Cornu spiral to determine the energy flux density of radiation, and this procedure was adapted to perform engineering calculations. Approximate equations are provided for calculation of the basic electromagnetic field parameters in the case where the radiation is diffracted by the edge of a semi-infinite plane, and the radiation intensity behind the protective shield was estimated using this procedure. The practical value of the procedure proposed in this paper is that it enables the dimensions of the protective shield to be determined without complex calculations using specialized software.

Keywords:

diffraction by the edge of a semi-infinite plane, projected geometric shadow, Cornu spiral, energy flux density, electromagnetic radiation, protective shield

Acknowledgements:

This work was performed under Russian Federation Government Decree 218 (PROJECT 218) of 9 April 2010 as part of scientific R&D work performed with the financial support of the Russian Federation Ministry of Education and Science (Contract No. 03.G25.31.0294 of 13 July 2018). This work was performed at the lead scientific R&D organization, the D. F. Ustinov VOENMEKH Baltic State Technical University.

OCIS codes: 050.1755, 050.1940

References:

1. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon Press, Oxford, 1968; Glavnaya Redatksiya Fiziko-Matematicheskoy Literatury Izd-va Nauka, Moscow, 1973).
2. G. S. Landsberg, Optics (Fizmatlit, Moscow, 2003).
3. D. V. Bayandin and I. S. Stvolov, “Mathematical tools associated with the Cornu spiral for diffraction problems in an interactive computer model,” in Interactive Electronic Resources and Techniques for Using Such Resources in Education, https://cyberleninka.ru/article/n/apparat-spirali-kornyu-zadach-difraktsii-na-interaktivnoy-kompyuternoy-modeli/viewer.
4. SanPiN 2.2.4/2.1.8.055-96, Radio-Frequency Electromagnetic Radiation.
5. D. V. Kir’yanov, MathCad15/MathCad Prime 1.0 (BKhV-Peterburg, Saint Petersburg, 2012).
6. J. Walkenbach, Excel 2013 Formulas (Wiley, Hoboken, NJ, 2013; Vil’yams, Moscow, 2017).
7. G. T. Markov, B. M. Petrov, and G. P. Grudinskaya, Electrodynamics and Radio Wave Propagation (Soviet Radio, Moscow, 1969).
8. V. V. Nikol’skiy and T. M. Nikol’skaya, Electrodynamics and Radio Wave Propagation (Nauka, Moscow, 1989).
9. A. S. Boreysho, A. F. Leonov, S. Y. Strakhov, and A. V. Trilis, “Features of radiation beam formation in resonators with perforated mirrors,” Quantum Electron. 33(2), 177–180 (2003).