DOI: 10.17586/1023-5086-2020-87-05-13-17
УДК: 535, 53.087, 621.383, 628.9.037
Measurement of 1.94 µm YAP:Tm3+ laser beam quality using a CCD camera
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Сумачев К.Э., Шарков В.В., Савикин А.П., Гришин И.А. Измерение пространственных характеристик лазерного излучения YAP:Tm3+-лазера длиной волны генерации 1,94 мкм с применением камеры ПЗС // Оптический журнал. 2020. Т. 87. № 5. С. 13–17. http://doi.org/10.17586/1023-5086-2020-87-05-13-17
Sumachev K.E., Sharkov V.V., Savikin A.P., Grishin I.A. Measurement of 1.94 µm YAP:Tm3+ laser beam quality using a CCD camera [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 5. P. 13–17. http://doi.org/10.17586/1023-5086-2020-87-05-13-17
K. Sumachev, V. Sharkov, A. Savikin, and I. Grishin, "Measurement of 1.94 µm YAP:Tm3+ laser beam quality using a CCD camera," Journal of Optical Technology . 87(5), 262-265 (2020). https://doi.org/10.1364/JOT.87.000262
In this study, a method is proposed to measure the spatial properties of laser emissions in the range of 2.0 µm. The infrared emission spectrum is first converted into a spectrum in the visible range using a fluorozirconate ZBLAN:Ho3+ glass sample. Subsequently, the converted emission is detected using a Pulnix TM-7CN CCD camera and the laser beam image is numerically processed using a specialized software package in the LabVIEW environment. This enables the measurement of intensity distribution over the beam cross-section of the diode-pumped CW YAP:Tm3+ laser emitting at 1.94 µm. The beam quality factor, M2, is also evaluated.
mid-infrared laser sources, Gaussian beam, ap-conversion, anti-oxide luminescence
OCIS codes: 140.3295, 140.3380, 140.3070, 140.3613
References:1. J. M. Movilla, R. Martínez-Herrero, and P. M. Mejías, “Quality improvement of partially polarized beams,” Appl. Opt. 40, 6098–6101 (2001).
2. R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14(13), 6069–6074 (2006).
3. J. Penano, P. Sprangle, A. Ting, R. Fischer, B. Hafizi, and P. Serafim, “Optical quality of high-power laser beams in lenses,” J. Opt. Soc. Am. B 26(3), 503–510 (2009).
4. Y. Wang, H. Kan, T. Ogawa, and S. Wada, “Optimization of two-lens coupling structure for a tandem-set solid-state laser system,” J. Opt. 12(8), 085702 (2010).
5. L. Le Déroff, P. Salières, and B. Carré, “Beam-quality measurement of a focused high-order harmonic beam,” Opt. Lett. 23, 1541–1546 (1998).
6. P. Wessels and C. Fallnich, “Highly sensitive beam quality measurements on large-mode-area fiber amplifiers,” Opt. Express 11, 3346–3351 (2003).
7. R.W. Lambert, R. Cortés-Martínez, A. J.Waddie, J. D. Shepard, M. R. Taghizadeh, A. H. Greenaway, and D. P. Hand, “Compact optical system for pulse-to-pulse laser beam quality measurement and applications in laser machining,” Appl. Opt. 43(26), 5037–5046 (2004).
8. J. A. Ruff and A. E. Siegman, “Single-pulse laser beam quality measurements using a CCD camera system,” Appl. Opt. 31, 4907–4909 (1992).
9. R. Brinkmann, A. Knipper, G. Dröge, A. Miller, B. Gromoll, and R. Birngruber, “Ureterotomy with a pulsed holmium laser,” in Laser in der Medizin/Laser in Medicine (Springer-Verlag, Berlin, 1996) p. 16.
10. T. M. Buzug, D. Holz, J. Bongartz, M. Kohl-Bareis, U. Hartmann, and S. Weber, eds., Advances in Medical Engineering, Vol. 114 of Springer Proceedings in Physics (Springer, Berlin, 2007).
11. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
12. N. G. Zakharov, O. L. Antipov, A. P. Savikin, V. V. Sharkov, O. N. Eremeikin, Yu. N. Frolov, G. M. Mishchenko, and S. D. Velikanov, “Efficient emission at 1908 nm in a diode-pumped Tm:YLF laser,” Quantum Electron. 39, 410–414 (2009).
13. A. K. Kazaryan, Yu. P. Timofeev, and M. V. Fok, “Anti-Stokes shift of luminescence in luminophores based on rare-earth metal ions,” in Trudy FIAN 175 (Nauka, Moscow, 1986).
14. A. P. Savikin, I. Yu. Perunin, S. V. Kurashkin, A. V. Budruev, and I. A. Grishin, “Study of anti-Stokes luminescence of ZBLAN:Ho3C ceramics excited at 1908 nm,” Opt. Spectrosc. 125, 472–487 (2018).
15. A. A. Lyapin, P. A. Ryabochkina, S. N. Ushakov, and P. P. Fedorov, “Visualiser of two-micron laser radiation based on Ho:CaF2 crystals,” Quantum Electron. 44(6), 602–605 (2014).