DOI: 10.17586/1023-5086-2020-87-05-03-12
УДК: 629.464.47
Using triangulation laser scanners to monitor the condition of railroad tracks
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Боронахин А.М., Ларионов Д.Ю., Подгорная Л.Н., Шалымов Р.В., Большакова А.В. Особенности использования триангуляционных лазерных сканеров для контроля состояния железнодорожных путей // Оптический журнал. 2020. Т. 87. № 5. С. 3–12. http://doi.org/10.17586/1023-5086-2020-87-05-03-12
Boronakhin A.M., Larionov D.Yu., Podgornaya L.N., Shalymov R.V., Bolshakova A.V. Using triangulation laser scanners to monitor the condition of railroad tracks [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 5. P. 3–12. http://doi.org/10.17586/1023-5086-2020-87-05-03-12
A. Boronakhin, D. Larionov, L. Podgornaya, R. Shalymov, and A. Bolshakova, "Using triangulation laser scanners to monitor the condition of railroad tracks," Journal of Optical Technology . 87(5), 255-261 (2020). https://doi.org/10.1364/JOT.87.000255
In order to measure the geometrical parameters of railroad track, one needs to know the position of the heads of the left and right rails—in particular, the point of the rail 14 mm below its rolling surface. The use of triangulation laser scanners to carry out this task involves the problem of intense noise in the resulting images as a consequence of sunlight and the “moon-glade” effect on the rail’s smooth surface. An approach to the measurement of the railroad-track parameters is proposed, based on the recognition of images under railroad conditions and using supplementary structural and algorithmic resources, including the extraction of information from other sensors of the system (strapdown inertial navigation system, odometer). The methods proposed in this paper, in combination with the processing algorithm derived here, make it possible to determine the positioning of the rails to within 0.1 mm.
laser scanner, image processing, stencil inertial navigation system, rail head, track diagnostics
OCIS codes: 100.3008, 100.5010, 100.2000
References:1. EN 13848 Standard, “Railway applications—Track—Track geometry quality” (CEN, 2010).
2. “Technical indications for the determination and use of the characteristics of the installation and status obtained by rail cars at TsNII-4 (TsPT—55/15) track-inspection stations” (Department of Tracks and Equipment, Ministry of Transportation of Russia, Moscow, 2003).
3. P. N. Kuleshov, “High-speed TsNII-4 track-inspection stations,” Nauka Transp. Modern. Zheleznodorozhn. Transp. 2(6), 32–33 (2013).
4. P. G. Yakovlev, “Intelligent technologies for monitoring and diagnosis,” Zhelezn. Dorogi Mira (2), 61–67 (2017).
5. D. Popov, “The Alps Check,” Gudok.ru (26(26635)), 2 (2019).
6. E. D. Bokhman, A. M. Boronahin, Yu. V. Filatov, D. Yu. Larionov, L. N. Podgornaya, R. V. Shalymov, and G. N. Zuzev, “Optical-inertial system for railway track diagnostics,” in Inertial Sensors and Systems (ISS), Karlsruhe, Germany, 2014.
7. A. M. Boronahin, A. S. Kukaev, D. Yu. Larionov, L. N. Podgornaya, R. V. Shalymov, and E. D. Bokhman, “Optical profilometers for rail track diagnostics,” in IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), St. Petersburg,
2016, pp. 404–407.
8. V. V. Matveev and V. Ya. Raspopov, Fundamentals of the Construction of Strapdown Inertial Navigation Systems (GNTs RF OAO Kontsern TsNII Elektropribor, St. Petersburg, 2009).
9. V. N. Demkin, V. A. Stepanov, and M. V. Shadrin, “Systems of rapid prototyping with laser scanning,” Nauchno-Tekhn. Vedomosti SPbGPU Fiz.-Mat. Nauki (3(177)), 136–143 (2013).
10. Rules for the Operation of the Railroads of the Russian Federation (Mintrans, Moscow, 2011).
11. S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” in Third International Conference on 3D Digital Imaging and Modeling (3DIM), Quebec, 2001, pp. 145–152.
12. A. B. Velizhev, “Development and research of algorithms for the automatic mutual orientation of three-dimensional discrete models of objects obtained as a result of laser scanning,” Author’s Abstract of Dissertation for Candidate, Moscow State University of Geodesy and Cartography, Moscow (2008).
13. Yu. V. Filatov, A. M. Boronakhin, L. N. Podgornaya, E. D. Bokhman, D. Yu. Larionov, and R. V. Shalymov, “Methods and procedures for diagnosing railroad track, based on inertial and geoinformation technologies,” Byull. OUS OAO RZhD (5), 28–38 (2012).
14. GOST R 51685-2013, “Railroad rails. General Technical Conditions” (Standartinform, Moscow, 2014).
15. “Railway applications—Track—Rail—Part 1: Vignole railway rails 46 kg/m and above; German version EN 13674-1:2011” (CEN, 2011).
16. D. Yu. Larionov, “Developing an inertial–optical system for diagnosing railroad track,” Author’s Abstract of Dissertation for Candidate, SPbGETU LETI, St. Petersburg (2016).
17. V. A. Bodner, ed., Aviation Devices and Navigation Systems (VVIA im. prof. N.E. Zhukovskogo, Moscow, 1981).
18. https://www.micro-epsilon.ru/download/manuals/man–scanCONTROL-26xx–en.pdf.