DOI: 10.17586/1023-5086-2020-87-05-31-41
Testing of the stochastic parallel gradient descent algorithm to the alignment of a two-mirror telescope
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Min Li, Xin Liu, Ang Zhang, Hao Xian. Проверка эффективности алгоритма стохастического параллельного градиентного спуска для юстировки двухзеркальных телескопов. 2020. Т. 87. № 5. С. 31–41. http://doi.org/10.17586/1023-5086-2020-87-05-31-41
Min Li, Xin Liu, Ang Zhang, Hao Xian. Testing of the stochastic parallel gradient descent algorithm to the alignment of a two-mirror telescope, [in English] // Opticheskii Zhurnal. 2020. V. 87. № 5. P. 31–41. http://doi.org/10.17586/1023-5086-2020-87-05-31-41
The precise alignment of a high-performance, wide-field telescope is a key factor to ensure its imaging quality. The sharpness function of far-field images combined with an optimization algorithm is one of the most commonly used telescope alignment methods because of its advantages of having a concise measurement system, a simple calculation process, and wide application fields. In this paper, a Cassegrain telescope with two mirrors is aligned by maximizing the sharpness function of far-field images using the stochastic parallel gradient descent algorithm. To verify the effects of this method, both numerical simulations and experiments are implemented. The misalignments are corrected only after a few iterations, indicating that the stochastic parallel gradient descent algorithm can align the telescope rapidly. What’s more, wavefront errors are measured using a Shack–Hartmann wavefront sensor to confirm the accuracy. The results show that this method can align a telescope that is in a misaligned working state with large misalignment errors rapidly and accurately, and the image quality after correction is improved greatly.
telescope alignment, sharpness function, stochastic parallel gradient descent algorithm, rms radius of error
OCIS codes: 220.1140, 220.1000, 080.1010, 120.0120
References:1. Gu Z.Y., Yan C.X., Wang Y. Alignment of a three-mirror anastigmatic telescope using nodal aberration theory // Opt. Exp. V. 19. № 23. P. 25182–25101.
2. Luna E., Cordero A., Valdez J., Gutiérrez L., Salas L. Telescope alignment by out-of-focus stellar image analysis // Publ. Astron. Soc. Pac. V. 755. № 111. P. 104–110.
3. Luna E., Zazueta S., Gutiérrez L. An innovative method for the alignment of astronomical telescopes // Publ. Astron. Soc. Pac. № 113. P. 379–384.
4. Yang H.S., Lee Y.W., Kim E.D., Choi Y.W., Aziz Ad., Rasheed Ad. Alignment methods for Cassegrain and RC telescope with wide field of view // Proc. SPIE. 2004. V. 5528. P. 334–341.
5. Manuel A.M. Field-dependent aberrations for misaligned reflective optical systems // Thesis. PhD. University of Arizona, Optical Sciences Center, 2009. (Citable URI: https://repository.arizona.edu/handle/10150/193941).
6. Grey L.D. Control and alignment of the Hubble space telescope // Proc. SPIE. 1986. V. 0628. P. 443–450.
7. Figoski J.W., Shrode T.E., Moore G.F. Computer-aided alignment of a wide field, three mirror, unobscured, high-resolution sensor // Proc. SPIE. 1989. V. 1049. P. 166–177.
8. Kim S., Yang H.S., Lee Y.W., Kim S.W. Merit function regression method for efficient alignment control of two-mirror optical systems // Opt. Exp. 2007. V. 8. № 15. P. 5059–5068.
9. Lee H., Dalton G.B., Tosh I.A.J., Kim S.-W. Computer-guided alignment II: Optical system alignment using differential wavefront sampling // Opt. Exp. 2007. V. 23. № 15. P. 15424–15437.
10. Kim Y.J., Yang H.S., Lee Y.W. Computer-aided alignment method using RMS WFE value as an optimization criterion // Proc. SPIE. 2012. V. 8491. P. 1–9.
11. Lee Y.H. Alignment of an off-axis parabolic mirror with two parallel He-Ne laser beams // Opt. Eng. 2012. V. 11. № 31. P. 2287–2292.
12. Descour M.R., Willer M.R., Clarke D.S., Volin C.E. EUVL projection-camera alignment methods // Proc. SPIE. 1999. V. 3676. P. 663–668.
13. Descour M.R., Willer M.R., Clarke D.S., Volin C.E. Misalignment modes in high performance optical systems // Opt. Eng. 2000. V. 39. № 7. P. 1737–1747.
14. Gao Z.S., Chen L., Zhou S.Z., Zhu R.H. Computer aided alignment for a reference transmission sphere of an interferometer // Opt. Eng. 2004. V. 43. P. 69–74.
15. Figoski J.W. Alignment and test results of the quick bird telescope using the ball optical system test facility // Proc. SPIE. 1999. V. 3785. P. 99–108.
16. Gonsalves R.A. Phase retrieval from modulus data // JOSA. 1976. V. 66. № 9. P. 961–964.
17. Gerchberg R., Saxton W. Phase determination for image and diffraction plane pictures in the electron microscope // Optik. 1971. Bd. 3. № 35. S. 275–284.
18. Fienup J. Phase-retrieval algorithms for complicated optical system // Appl. Opt. 1982. V. 21. № 15. P. 2758–2769.
19. Paxman R.G., Schulz T.J., Fienup J.R. Joint estimation of object and aberrations by using phase diversity // JOSA A. 1992. V. 9. № 7. P. 1072–1085.
20. Bolcar M., Fienup J. Sub-aperture piston phase diversity for segmented and multi-aperture systems // Appl. Opt. 2009. V. 48. № 1. P. A5–A12.
21. Muller R.A., Buffington A. Real-time correction of atmospherically degraded telescope images through image sharpening // JOSA A. 1974. V. 9. № 64. P. 1200–1210.
22. Fienup J.R., Miller J.J. Aberration corrected by maximizing generalized sharpness metrics // JOSA A. 2003. V. 4. № 20. P. 609–620.
23. Dong B., Yu J. Hybrid approach used for extended image-based wavefront sensor-less adaptive optics // Opt. Lett. 2015. V. 13. № 4. P. 041101–041110.
24. Li Z.K., Zhao X.H. BP artificial neural network based wave front correction for sensor-less free space optics communication // Opt. Commun. 2017. V. 385. P. 219–228.
25. Vorontsov M.A., Carhart G.W. Adaptive optics based on analog parallel stochastic optimization: Analysis and experimental demonstration // JOSA A. 2000. V. 8. № 17. P. 1440–1453.
26. Mukai R., Wilson K., Vilnrotter V. Application of genetic and gradient descent algorithms to wavefront compensation for the deep-space optical communications receiver // The Interplanetary Network Progress Report. 2005. P. 1–21.
27. Zommer S., Ribak E.N., Lipson S.G., and Adler J. Simulated annealing in ocular adaptive optics // Opt. Lett. 2006. V. 31. № 7. P. 939–941.
28. Yang H.Z., Li X.Y., Jiang W.H. Comparison of several stochastic parallel optimization control algorithms for adaptive optics system // High Power Laser and Particle Beams. 2008. V. 1. № 20. P. 11–16.
29. Vorontsov M.A., Carhart G.W. Adaptive phase-distortion correction based on parallel gradient-descent optimization // Opt. Lett. 1997. V. 22. № 12. P. 907–909.
30. Yang H.Z., Li X.Y., Gong C.L., Jiang W.H. Restoration of turbulence degraded extended object using the stochastic parallel gradient descent algorithm: Numerical simulation // Opt. Exp. 2009. V. 17. № 5. P. 3052–3062.
31. Dong B., Ren D.Q., Zhang X. Stochastic parallel gradient descent based adaptive optics used for a high contrast imaging coronagraph // Res. Astron. Astrophys. 2011. V. 8. № 11. P. 997–1002.
32. Riker J.F., Polnau E., Lachinova S.L., Rao Gudimetla V.S. Adaptive beam director for a tiled fiber array // AMOS Conference. 2006. P. 92.
33. Marchi G., Scheifling C. Adaptive optics concepts and systems for multipurpose applications at near horizontal line of sight: Developments and results // Proc. SPIE. 2009. V. 7476. P. 74760–74769.
34. Carrizo C.E., Calvo R.M., Belmonte A. Intensity-based adaptive optics with sequential optimization for laser communications // Opt. Exp. 2018. V. 13. № 26. P. 16044–16053.
35. Han X.Z., Xin Y., Bing D. Use the stochastic parallel gradient descent control algorithm to calibrate the second mirror in a three-mirror system // Laser & Optoelectronics Progress. 2010. V. 47. № 4. P. 042201.
36. Vorontsov M.A., Sivokon V.P. Stochastic parallel gradient descent technique for high resolution wavefront phase distortion correction // JOSA A. 1998. V. 15. № 10. P. 2745–2758.
37. Fu Q., Pott J.-U., Shen F., Rao C.H., Li X.Y. Stochastic parallel gradient descent optimization based on decoupling of the software and hardware // Opt. Commun. 2014. V. 310. P. 138–149.
38. Wang X.L., Zhou P., Ma Y.X., Leng J.Y., Xu X.J., Liu Z.J. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm // Opt. Lett. 2011. V. 16. № 36. P. 3121–3123.
39. Geng C., Luo W., Tan Y., Liu H.M., Mu J.B., Li X.Y. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control // Opt. Exp. 2013. V. 21.№ 21. P. 25045–25055. 40. Dong B., Yu J. Hybrid approach used for extended image-based wavefront sensor-less adaptive optics // Opt. Lett. 2015. V. 13. № 4. P. 041101–041110.