DOI: 10.17586/1023-5086-2020-87-05-42-53
УДК: 681.787: 681.518.5
Dynamic fringe phase estimation in controllable phase-shifting interferometry by adaptive Wiener filtering
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Гуров И.П., Артемьева И.А., Капранова В.О. Динамическое оценивание фазы в интерферометрии управляемого фазового сдвига методом адаптивной фильтрации Винера// Оптический журнал. 2020. Т. 87. № 5. С. 42–53. http://doi.org/10.17586/1023-5086-2020-87-05-42-53
Gurov I.P., Artem’eva I.A., Kapranova V.O. Dynamic fringe phase estimation in controllable phase-shifting interferometry by adaptive Wiener filtering [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 5. P. 42–53. http://doi.org/10.17586/1023-5086-2020-87-05-42-53
I. Gurov, I. Artem’eva, and V. Kapranova, "Dynamic fringe phase estimation in controllable phase-shifting interferometry by adaptive Wiener filtering," Journal of Optical Technology . 87, 284-292 (2020). https://doi.org/10.1364/JOT.87.000284
This paper presents the results of using adaptive Wiener filtering to dynamically estimate the parameters of interferometric signals. It is shown that the interference-fringe parameters, including the phase of the fringes, can be directly computed from the coefficients obtained by an adaptive Wiener filter and the criterion of the minimum error variance. The method considered here introduces no limitations on the number and size of the given phase shifts and makes it possible to determine the actual phase shift. Estimates are given of the errors of the method when observation noise and random deviations of the phase-shift step are present.
optical control, interference band phase, dynamic interference band processing, Wiener filtration
OCIS codes: 070.2025, 120.3180, 120.5050
References:1. D. Malacara, M. Servín, and Z. Malacara, Interferogram Analysis for Optical Testing (Taylor & Francis, New York, 2005).
2. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wavefront measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983).
3. P. J. De Groot, “Vibration in phase-shifting interferometry,” J. Opt. Soc. Am. A 12, 354–365 (1995).
4. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase-calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987).
5. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34, 3610–3619 (1995).
6. H. Zhang, M. J. Lalor, and D. R. Burton, “Error-compensating algorithms in phase-shifting interferometry: a comparison by error analysis,” Opt. Lasers Eng. 31, 381–400 (1999).
7. A. Patil and P. Rastogi, “Approaches in generalized phase-shifting interferometry,” Opt. Lasers Eng. 43, 475–490 (2005).
8. J. Novák, P. Novák, and A. Mikš, “Multi-step phase-shifting algorithms insensitive to linear phase shift errors,” Opt. Commun. 281, 5302–5309 (2008).
9. K. Freischlad and C. L. Koliopoulos, “Fourier description of digital phase-measuring interferometry,” J. Opt. Soc. Am. A 7, 542–551 (1990).
10. M. Servin and J. C. Estrada, “Analysis and synthesis of phaseshifting algorithms based on linear systems theory,” Opt. Lasers Eng. 50, 1009–1014 (2012).
11. J. N. Buytaert and J. J. J. Dirckx, “Study of the performance of 84 phase-shifting algorithms for interferometry,” J. Opt. 40, 114–131 (2011).
12. N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series (MIT Press, Boston, 1949).
13. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME 82, 35–45 (1960).
14. I. Gurov and M. Volynsky, “Interference fringe analysis based on recurrence computational algorithms,” Opt. Lasers Eng. 50, 514–521 (2012).
15. A. Garifullin, I. Gurov, and M. Volynsky, “Unwrapped wavefront evaluation in phase-shifting interferometry based on 3D dynamic fringe processing in state space,” J. Opt. Soc. Am. A 33, 1612–1621 (2016).
16. S. V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction (Wiley, Chichester, 2006), chap. 6, pp. 165–186. 292 Vol. 87, No. 5 / May 2020 / Journal of Optical Technology Research Article
17. B. Widrow and S. D. Stearns, eds., Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1985; Radio i Svyaz’, Moscow, 1989).
18. A. Nava-Vega, L. Salas, E. Luna, and A. Cornejo-Rodríguez, “Correlation algorithm to recover the phase of a test surface using phase-shifting interferometry,” Opt. Express 12, 5296–5306 (2004).