DOI: 10.17586/1023-5086-2020-87-05-81-88
УДК: 621.92
Influence of thermophysical processes in bonded diamond tools on the processing parameters of optical materials
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кондратенко В.С., Кудж С.А., Кадомкин В.В., Ващенко О.А. Влияние теплофизических процессов в связанном алмазном инструменте на параметры обработки оптических материалов // Оптический журнал. 2020. Т. 87. № 5. С. 77–80. http://doi.org/10.17586/1023-5086-2020-87-05-77-80
Kondratenko V.S., Kudzh S.A., Kadomkin V.V., Vashchenko O.A. Influence of thermophysical processes in bonded diamond tools on the processing parameters of optical materials [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 5. P. 77–80. http://doi.org/10.17586/1023-5086-2020-87-05-77-80
A mathematical model of the thermophysical processes that occur on the contact area between a heat-emitting element (a diamond grain) and the heat-dissipating (bonding) material is proposed for the grinding and polishing of optical materials using bonded diamond-abrasive tools. The results obtained illustrate the influence of the diamond grain size used in the bonded tool on the temperature field profile at the tool contact area and the correlation between the acceptable diamond grain size and the thermophysical properties of the binder material.
mathematical model, heat process, grinding, optical materials, bonded diamond tool, thermal conductivity, epoxy resin, thermally conductive polymer composite
OCIS codes: 220.1926, 000.3860
References:1. V. S. Kondratenko, “High-performance techniques of material processing with novel diamond tools,” Steklo Keram. 5, 39–43 (2018).
2. V. A. Nosenko, E. V. Fedotov, and M. V. Danilenko, “Mathematical modeling of grain wear by chipping using random Markov processes,” Vestn. YuUrGY Ser. Mashinostr. 15(2), 20–31 (2015).
3. Yu. P. Serdobintsev, M. Yu. Khar’kov, and A. S. Nazzad, “Modeling process of ceramic bearings diamond face grinding,” https://www.science-education.ru/pdf/2014/3/459.pdf.
4. S. P. Nikitin, “A grinder mathematical modeling taking into account the interaction of elastic, thermal subsystems and working process,” Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk 15(4), 391–395 (2013).
5. O. S. Lomova, “The mathematical modeling of the structural changes in the surfaces of workpieces during thermal perturbations in the grinding process,” Omsk. Nauchn. Vestn. 2(12), 95–98 (2013).
6. V. S. Kondratenko and V. V. Kadomkin, “Calculation of thermal processes in bound diamond tools during grinding of glass and other materials,” Steklo Keram. 11, 13–21 (2018).
7. V. S. Kondratenko and V. V. Kadomkin, “Calculation of thermal processes in a bonded diamond tool during grinding of glass and other materials,” Glass Ceram. 75(11–12), 428–434 (2019).
8. M. A. Mikheev and I. M. Mikheeva, Heat Transfer Principles, 2nd ed. (Energiya, Moscow, 1977).
9. V. S. Avduevskii, B. M. Galitseiskii, G. A. Glebov, and Yu. I. Danilov, Heat-Transfer Principles in Aviation and Space-Missile Hardware (Mashinostroenie, Moscow, 1992).
10. I. A. Dzhemesyuk and S. G. Gorbunov, “Mathematical modeling of the influence of relaxation processes on the temperature field in an elastic half-space,” Ross. Tekhnol. Zh. 5(5), 40–50 (2017).
11. V. S. Kondratenko, Yu. I. Sakunenko, and D. A. Burlyai, “Energytransferring plastics and their innovation capacity,” Vestn. MGTU MIREA 2(3(8)), 12–21 (2015).
12. A. A. Berlin and F. A. Shutov, Reactive Oligomer-Based Polymer Foam (Khimiya, Moscow, 1978).