ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-05-89-95

УДК: 535.33

Light absorption in mono- and polycrystalline YAG:Nd samples under pulsed electron irradiation

For Russian citation (Opticheskii Zhurnal):

Емлин Р.В., Яковлев В.Ю., Куликов В.Д., Шитов В.А., Максимов Р.Н. Поглощение света в образцах моно- и поликристаллического YAG:Nd при импульсном электронном облучении // Оптический журнал. 2020. Т. 87. № 5. С. 89–95. http://doi.org/10.17586/1023-5086-2020-87-05-89-95

 

Emlin R.V., Yakovlev V.Yu., Kulikov V.D., Shitov V.A., Maksimov R.N. Light absorption in mono- and polycrystalline YAG:Nd samples under pulsed electron irradiation [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 5. P. 89–95. http://doi.org/10.17586/1023-5086-2020-87-05-89-95

For citation (Journal of Optical Technology):

R. Emlin, V. Yakovlev, V. Kulikov, V. Shitov, and R. Maksimov, "Light absorption in mono- and polycrystalline YAG:Nd samples under pulsed electron irradiation," Journal of Optical Technology.  87, 318-322 (2020). https://doi.org/10.1364/JOT.87.000318

Abstract:

We studied the onset of induced optical absorption in mono- and polycrystalline Y3Al5O12:Nd3+ samples upon irradiation by a nanosecond electron beam with electron energy of 250 keV and current density of 25A/cm2. We show that in such crystalline samples, the fast electrons produce induced absorption between 1 and 4.2 eV expressed as a superposition of six adjacent elementary lines. We found that the induced absorption is due to electron transitions from the valence band to a local level around an O−–hole center, while the initial-phase (10−7−10−4s) relaxation of the induced absorption is determined by quadratic recombination of conduction-band electrons with the O−–hole centers. The higher density of structural defects in the polycrystalline sample than the monocrystalline sample increases the band-electron lifetime against capture by O− centers.

Keywords:

yttrium-aluminum garnet, transmission spectra, absorbance, induced absorption

OCIS codes: 160.3380, 140.3380, 140.7240, 300.1030

References:

1. P. P. Fedorov, V. A. Maslov, V. A. Usachev, and N. E. Kononenko, “Synthesis of laser ceramics based on nanodisperse yttrium aluminum garnet Y3Al5O12,” Vestn. MGTU N. E. Baumana Ser.

Priborostr. (7), 28–34 (2012).

2. K. Mori, “Transient colour centres caused by UV light irradiation in yttrium aluminium garnet crystals,” Phys. Status Solidi A 42, 375–384 (1977).

3. P. A. Arsen’ev, E. F. Kustov, L. Li, and M. V. Chukichev, “On the defects of garnet monocrystals grown by the method of optical zone melting,” Sov. Phys. Crystallogr. 13, 640 (1968) [Kristallografiya 13(4), 740–742 (1968)].

4. N. Kulagin, A. Ovechkin, and E. Antonov, “Color centers in the  -irradiated garnet Y3Al15O12,” J. Appl. Spectrosc. 43(3), 1044–1049 (1985) [Zh. Prikl. Spektrosk. 43(3), 478–484 (1985)].

5. N. A. Kulagin and J. Dojcilovic, “Structural and radiation color centers and the dielectric properties of doped yttrium aluminum garnet crystals,” Phys. Solid State 49, 243–250 (2007) [Fiz. Tverd. Tela 49(2), 234–241 (2007)].

6. N. A. Kulagin, “Colour centres and nanostructures on the surface of laser crystals,” Quantum Electron. 42, 1008–1020 (2012) [Kvantovaya Elektron. 42(11), 1008–1020 (2012)].

7. S. N. Bagayev, V. V. Osipov, S. M. Vatnik, V. A. Shitov, I. S. Shteinberg, I. A. Vedin, P. F. Kurbatov, K. E. Luk’yashin, R. N. Maksimov, V. I. Solomonov, and P. E. Tverdokhleb, “Re3C:YAG laser ceramics: synthesis, optical properties and laser characteristics,” Quantum

Electron. 45, 492–497 (2015) [Kvantovaya Elektron. 45, 492–497 (2015)].

8. V. V. Osipov, R. N. Maksimov, V. A. Shitov, K. E. Lukyashin, G. Toci, M. Vannini, M. Ciofini, and A. Lapucci, “Fabrication, optical properties and laser outputs of Nd:YAG ceramics based on laser ablated and pre-calcined powders,” Opt. Mater. 71, 45–49 (2017).

9. V. V. Osipov, Y. A. Kotov, M. G. Ivanov, O. M. Samatov, V. V. Lisenkov, V. V. Platonov, A. M. Murzakaev, A. I. Medvedev, and E. I. Azarkevich, “Laser synthesis of nanopowders,” Laser Phys. 16(1), 116–125 (2006).

10. V. M. Lisitsyn and V. Y. Yakovlev, “Creation and relaxation of selftrapped excitons in a KI crystal in pulsed cascade excitation,” Phys. Solid State 37, 613–616 (1995) [Fiz. Tverd. Tela 37(4), 1126–1133 (1995)].

11. V. D. Kulikov and V. Y. Yakovlev, “Absorption of light by free charge carriers in the crystalline CdS under intense electron irradiation,” Russ. Phys. J. 59, 744–749 (2016) [Izv. VUZov. Fiz. 59(5), 123–127 (2016)].

12. A. I. Syurdo, “Optical radiation and emission properties of wideband- gap reduced-symmetry anion-defect oxides,” Abstract of Doctoral Dissertation (UGTU, Ekaterinburg, 2007).

13. A. I. Syurdo, V. S. Kortov, and I. I. Milman, “Luminescence of F centers in corundum with radiative defects,” Opt. Spectrosc. 64, 811–813 (1988) [Opt. Spektrosk. 64, 1363–1366 (1988)].

14. S. V. Nizhankovskii, N. S. Sidel’nikova, and V. V. Baranov, “Optical absorption and color centers in large Ti:sapphire crystals grown by horizontally directed crystallization under reducing conditions,” Phys. Solid State 57, 781–786 (2015) [Fiz. Tverd. Tela 57(4), 763–767 (2015)].

15. C. M. Wong, S. R. Rotman, and C. Warde, “Optical studies of cerium doped yttrium aluminum garnet single crystals,” Appl. Phys. Lett. 44, 1038–1040 (1984).

16. M. Nikl, V. Laguta, and A. Vedda, “Complex oxide scintillators: material defects and scintillation performance,” Phys. Status Solidi B 245, 1701–1722 (2008).

17. A. S. Marfunin, Spectroscopy, Luminescence and Radiation Centers in Minerals (Springer, Berlin, 1979; Nedra, Moscow, 1975).

18. A. N. Platonov, The Nature of the Color of Minerals (Naukova Dumka, Kiev, 1976).

19. O. Madelung, “Localized states,” in Introduction to Solid- State Physics (Springer, Berlin, 1978; Nauka, Moscow, 1985), pp. 377–434.

20. M. C. M. O’Brien and M. H. L. Pryce, “Paramagnetic resonance in irradiated diamond and quartz: interpretation,” in Defects in Crystalline Solids—Report of the Bristol Conference (Bristol, UK, July 1954) (The Physical Society, London, 1955), pp. 88–91.

21. J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971; Mir, Moscow, 1973).

22. V. N. Parmon, R. F. Khairutdinov, and K. I. Zamaraev, “Formal kinetics of tunneling electron transfer in solids,” Sov. Phys. Solid State 16, 1672–1675 (1975) [Fiz. Tverd. Tela 16(9), 2572–2577 (1975)].

23. I. N. Ogorodnikov, N. E. Poryva˘ı, V. A. Pustovarov, A. V. Tolmachev, R. P. Yavetski˘ı, and V. Y. Yakovlev, “Transient hole-polaron optical absorption in Li6Gd(BO3)3 crystals,” Phys. Solid State 51, 1160–1166 (2009) [Fiz. Tverd. Tela 51(6), 1097–1103 (2009)].

24. A. V. Rasuleva and V. I. Solomonov, “Identification of luminescence bands of Nd3C ions in yttrium aluminates Y3Al5O12 and YAlO3,” Phys. Solid State 47, 1489–1491 (2005) [Fiz. Tverd. Tela 47(8), 1432–1434 (2005)].