ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-06-18-23

УДК: 621.373.826

Effect of magnetic fields on the dual-frequency active element of a He–Ne laser

For Russian citation (Opticheskii Zhurnal):

Зоркин В.С., Чуляева Е.Г., Гомозкова Е.Ю. Исследование влияния магнитных полей на двухчастотный активный элемент гелий-неонового лазера // Оптический журнал. 2020. Т. 87. № 6. С. 18–23. http://doi.org/10.17586/1023-5086-2020-87-06-18-23

 

Zorkin V.S., Chulyaeva E.G., Gomozkova E.Yu. Effect of magnetic fields on the dual-frequency active element of a He–Ne laser. [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 6. P. 1823. http://doi.org/10.17586/1023-5086-2020-87-06-18-23

For citation (Journal of Optical Technology):

V. S. Zorkin, E. G. Chulyaeva, and E. Yu. Gomozkova, "Effect of magnetic fields on the dual-frequency active element of a He–Ne laser," Journal of Optical Technology . 87(6), 338-341 (2020). https://doi.org/10.1364/JOT.87.000338

Abstract:
In this study, the influence of a magnetic field on the output power of laser radiation and the shape of the amplitude–frequency response is investigated to design a laser with power stabilization.
Keywords:

amplitude-frequency response, magnetic field, power, stabilized laser

OCIS codes: 140.3425

References:

 

1. Plasma JSC, Ryazan’, Russia, http://www.plasmalabs.ru.

2. M. K. Dyatlov and V. G. Kas’yan, “Polarization of the radiation of a He–Cd optical quantum generator in a transverse magnetic field,” Electron. Tekh. Elektrovak. Gazorazryadnye Prib. (6), 24–26 (1968).

3. A. P. Voitovich, Magneto-optics of Gas Lasers (Nauka i Tekhnika, Minsk, 1984).

4. U. Lamb, Theory of Optical Lasers: Quantum Optics and Quantum Radiophysics (Mir, Moscow, 1965).

5. V. E. Privalov, Gas-Discharge Lasers in Marine Measuring Systems (Sudostroenie, Leningrad, 1977).

6. V. G. Gudelev, Yu. P. Zhurik, A. Ch. Izmailov, and V. M. Yasinskii, “Selfstabilization of the radiation intensity of a two-frequency gas laser,” Sov. J. Quantum Electron. 20(10), 1194–1199 (1990) [Kvant. Elektron. 17(10), 285–1291 (1990)].

7. V. G. Gudelev and V. M. Yasinskii, “Two-frequency helium–neon laser in a transverse magnetic field,” Sov. J. Quantum Electron. 12(7), 904–909 (1982) [Kvant. Elektron. 9(7), 1420–1428 (1982)].

8. S. A. Gonchukov, V. M. Ermachenko, A. Ch. Izmailov, R. D. Kasumova, V. N. Petrovskii, and A. N. Rurukin, “Gas laser with phase anisotropy in a constant magnetic field,” Sov. J. Quantum Electron. 11(2), 196–200 (1981) [Kvant. Elektron. 8(2), 333–340 (1981)].

9. V. G. Gudelev, Yu. L. Zhurik, A. Ch. Izmailov, and V. M. Yasinskii, “Dynamics of oscillation of a two-frequency gas-discharge laser under radiation intensity self-stabilization conditions,” Quantum Electron. 25(9), 846–850 (1995) [Kvant. Elektron. 22(9), 878–882 (1995)].

10. V. S. Zorkin, E. G. Chulyaeva, and A. V. Stepura, “Investigation of magnetic field influence on a dual-frequency active element of a He–Ne laser,” in Proceedings of II MNTK and MNMK (STNO-2018) (2018), pp. 54–59.

11. V. S. Zorkin, A. N. Vlasov, A. I. Bodrov, E. G. Chulyaeva, A. Ya. Payurov, and V. V. Kyun, “Ways to control the shape of the amplitudefrequency response of a He–Ne laser to stabilize its parameters,” in Proceedings of Laser-Information Technology in Medicine, Biology,

Geoecology, and Transport XXIV (2018), pp. 14–15.

12. Sh1-8 magnetic induction meter, http://zapadpribor.com/sh1-8/.

13. G. I. Dolgikh and V. E. Privalov, Laser Physics: Fundamental and Applied Studies (Reya, Vladivostok, 2016).

14. V. I. Butikov, Optics (Vysshaya Shkola, Moscow, 1986).