DOI: 10.17586/1023-5086-2020-87-06-24-33
УДК: 612.843.3.01
Suppressing the continuous noise of photoreceptor rods under the action of negative feedback formed by a horizontal cell
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Васильев В.Н., Тибилов А.С., Шелепин Ю.Е. Подавление непрерывных шумов фоторецепторов – палочек под действием отрицательной обратной связи, формируемой горизонтальной клеткой // Оптический журнал. 2020. Т. 87. № 6. С. 24–33. http://doi.org/10.17586/1023-5086-2020-87-06-24-33
Vasil’ev V.N., Tibilov A.S., Shelepin Yu.E. Suppressing the continuous noise of photoreceptor rods under the action of negative feedback formed by a horizontal cell [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 6. P. 24–33. http://doi.org/10.17586/1023-5086-2020-87-06-24-33
V. N. Vasil’ev, A. S. Tibilov, and Yu. E. Shelepin, "Suppressing the continuous noise of photoreceptor rods under the action of negative feedback formed by a horizontal cell," Journal of Optical Technology . 87(6), 342-348 (2020) .https://doi.org/10.1364/JOT.87.000342
This paper gives estimates of the SNR for a one-photon signal and the continuous noise of photoreceptor rods. It shows that negative feedback mediated via the horizontal cell needs to be taken into account when the reaction of the retina of the eye to low-level illumination is calculated. The influence of negative feedback increases the SNR by an order of magnitude relative to the signal when it is transmitted from the photoreceptor to the bipolar cell, and this agrees with the experimental data.
rod synapse - rod bipolar, single-photon signal, continuous rod noises, increased signal-to-noise ratio in rod bipolar.
OCIS codes: 330.4270
References:1. V. N. Vasil’ev and A. S. Tibilov, “Comparison of the absolute sensitivity of a dark-adapted eye and an eye equipped with an electronmultiplying CCD camera,” J. Opt. Technol. 85(3), 157–165 (2018) [Opt. Zh. 85(3), 43–53] (2018).
2. D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis,” J. Physiol. 357, 575–607 (1984).
3. P. Ala-Laurila and F. Rieke, “Coincidence detection of single-photon responses in the inner retina at the sensitivity limit of vision,” Curr. Biol. 24(24), 2888–2898 (2014).
4. G. D. Field, A. P. Sampath, and F. Rieke, “Retinal processing near absolute threshold: from behavior to mechanism,” Annu. Rev. Physiol. 67, 491–514 (2005).
5. W. B. Thoreson and S. C. Mangel, “Lateral interactions in the outer retina,” Prog. Retinal Eye Res. 31(5), 407–441 (2012).
6. W. B. Thoreson, N. Babai, and T. M. Bartoletti, “Feedback from horizontal cells to rod photoreceptors in vertebrate retina,” J. Neurosci. 28(22), 5691–5695 (2008).
7. D. Xin and S. A. Bloomfield, “Dark- and light-induced changes in coupling between horizontal cells in mammalian retina,” J. Comp. Neurol. 405(1), 75–87 (1999).
8. E. B. Trexler, A. R. Casti, and Y. Zhang, “Nonlinearity and noise at the rod—rod bipolar cell synapse,” Vis. Neurosci. 28(1), 61–68 (2011).
9. H. Okawa, K. J. Miyagishima, A. A. Cyrus, J. B. Hurley, G. D. Field, and A. P. Sampath, “Optimal processing of photoreceptor signals is required to maximize behavioural sensitivity,” J. Physiol. 588(11), 1947–1960 (2010).