ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-06-34-42

Characterization of interaction between ligustroflavone and bovine serum albumin

For Russian citation (Opticheskii Zhurnal):

Sun S., Yuan Z., Lu Y.Q. Характеризация взаимодействия лигустрофлавона с бычьим сывороточным альбумином // Оптический журнал. 2020. Т. 87. № 6. С. 34–42. http://doi.org/10.17586/1023-5086-2020-87-06-34-42

 

Sun S., Yuan Z., Lu Y.Q. Characterization of interaction between ligustroflavone and bovine serum albumin [in English] // Opticheskii Zhurnal. 2020. Т. 87. № 6. С. 34–42. http://doi.org/10.17586/1023-5086-2020-87-06-34-42

For citation (Journal of Optical Technology):
S. Sun, Z. Yuan, and Y. Q. Lu, "Characterization of the interaction between ligustroflavone and bovine serum albumin," Journal of Optical Technology. 87(6), 349-354 (2020). https://doi.org/10.1364/JOT.87.000349
Abstract:

The interaction of ligustroflavone with bovine serum albumin was investigated by affinity capillary electrophoresis, ultraviolet visible absorption spectroscopy and fluorescence quenching methods in this ariticle. The affinity capillary electrophoresis gives binding constants (Ka) at near-physiological conditions. Mobility ratio (M) was selected to deduce the Ka, which effectively eliminates the influence of electroosmotic flow. The fluorescence quenching method provided quenching constant Ksv, binding site number n and binding constants Kb. The fluorescence results indicate that bovine serum albumin fluorescence quenching is mainly a static quenching process. The Ka value (7.1089ґ104) obtained from affinity capillary electrophoresis is in agreement with Kb (value is 8.0057ґ104) from fluorescence spectroscopy showing ligustroflavone has great affinity toward bovine serum albumin. Complex formed between ligustroflavone and bovine serum albumin was evident from the data of ultraviolet visible absorption spectroscopy which is consistent with the fluorescence static quenching result. And thermodynamic parameters of the negative DH and DS values obtained by affinity capillary electrophoresis showed that the van der Waals interactions and hydrogen bond played important roles in the binding of ligustroflavone to bovine serum albumin. The data obtained in this paper can help us in gaining some insights on a possible drug/protein interaction.

Keywords:

ligustroflavone, bovine serum albumin, affinity capillary electrophoresis, fluorescence spectroscopy, binding constants, thermodynamic parameters

OCIS codes: 300.0300, 300.6280, 300.6540, 300.6550, 000.1430, 000.6850

References:

1.    He T.X., Liang Q.L., Luo T.T., Wang Y.M., Luo G.A. Study on interactions of phenolic acid-like drug candidates with bovine serum albumin by capillary electrophoresis and fluorescence spectroscopy // J. Solution Chem. 2010. V. 39(11). P. 1653–1664.

2.   Xiang Y.H., Duan L.L., Ma Q., Lv Z.Z., Zhu R.H, Zhang Z.Y. Fluorescence spectroscopy and molecular simulation on the interaction of caffeic acid with human serum albumin // Lumin. 2016. V. 31 (8). P. 1496–1502.

3.   Xu Y.J., Hong T.T., Chen X.P., Ji Y.B. Affinity capillary electrophoresis and fluorescence spectroscopy for studying enantioselective interactions between omeprazole enantiomer and human serum albumin // Electrophoresis. 2017. V. 38 (9–10). P. 1366–1373.

4.   Zhang Y.L., Sha Y.J., Qian K., Chen X., Chen Q. Comparison of three methods for analyzing loureirin B and human serum albumin interaction using capillary electrophoresis // Electrophoresis. 2017. V. 38(7). P. 1038–1043. 

5.   Minic S., Stanic-Vucinic D., Radomirović M., Radibratovic M., Nikolic M., Cirkovic Velickovic T. Characterization and effects of binding of food-derived bioactive phycocyanobilin to bovine serum albumin // Food Chem. 2018. V. 239. P. 1090–1099. 

6.   Wani T.A., Bakheit A.H., Abounassif M.A., Zargar S. Study of interactions of an anticancer drug neratinib with bovine serum albumin: spectroscopic and molecular docking approach // Front. Chem. 2018. V. 6(47). P. 1–9.

7.    Shi J.H., Pan D.Q., Wang X.X., Liu T.T., Jiang M., Wang Q. Characterizing the binding interaction between antimalarial arte-mether (AMT) and bovine serum albumin (BSA): spectroscopic and molecular docking methods // J. photoch. Photobio. B. 2016. V. 162. P. 14–23.

8.   Roy S., Nandi R.K., Ganai S., Majumdarb K.C., Dasa T.K. Binding interaction of phosphorus heterocycles with bovine serum albumin: A biochemical study // J. Pharm. Anal. 2017. V. 7(1). P. 19–26.

9.   Dominguez M., Cortes-Figueroa J.E., Melendez E. Biological interaction of Molybdenocene dichloride with bovine serum albumin using fluorescence spectroscopy // J. Chem. Educ. 2018. V. 95(1). P. 152–157.

10. He T.X., Liang Q.L., Wang Y.M., Luo G.A. Characterization of the interactions between natural flavonoid compounds and bovine serum albumin by capillary electrophoresis and fluorescence method // J. Liq. Chromatogr&R. 2010. T. 33(4). P. 548–562.

11.  Ma S.G., Yuan S.P., Hou Q. Study on flavonoid glycosides and their anti-inflammatory activities in the Folium Turpinia // J. Tradit. Chin. Med. 2013. V. 38(11). P. 1747–1750.

12.  Zhang L., Li J., Yu S.C., Jin Y., Lu X.W., Li Y. Therapeutic effects and mechanisms of total flavonoids of Turpinia Arguta Seen on adjuvant arthritis in rats // J. Ethnopharmacol. 2008. V. 116(1). P. 167–172.

13.  Zhang L., Li J., Yu S.C., Jin Y., Lu X.W., Peng L. Effect of total flavonoids from Shan Xiang Yuan on immune function of adjuvant arthritis in rats // Chin. Pharmacol. Bull. 2007. V. 23(1). P. 106–110.

14.  Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Part 1. Beijing: China Medical Science Press, 2010. P. 28.

15.  Asensi-Bernardi L., Martín-Biosca Y., Escuder Gilabert L., Sagrado S., Medina-Hernández M.J. Evaluation of the enantioselective binding of imazalil to human serum albumin by capillary electrophoresis // Biomed. Chromatogr. 2015. V. 29(11). P. 1637–1642.

16.  Zhang J., Chen L.N., Zeng B.R., Kang Q.L., Dai L.Z. Study on the binding of chloroamphenicol with bovine serum albumin by fluorescence and UV-vis spectroscopy // Spectrochim. Acta A. 2013. V. 105(1). P. 74–79.

17.  Yue Y.Y., Chen X.G., Qin J., Yao X.J. Characterization of the mangiferin-human serum albumin complex by spectroscopic and molecular modeling approaches // J. Pharm. Biomed. Anal. 2009. V. 49(3). P. 753–759.

18. Tayyab S., Mirza Izzudin M., Kabir M.Z., Feroz S.R., Tee W.V., Mohamad S.B., Alias Z. Binding of an anticancer drug, axitinib to human serum albumin: Fluorescence quenching and molecular docking study // J. Photoch. Photobio. B. 2016. V. 162. P. 386–394.

19.  Li Y., Chen C., Zhang C.P., Duan J.Y., Yao H.K., Wei Q.L. Probing the binding interaction of AKR with human serum albumin by multiple fluorescence spectroscopy and molecular modeling // J. Biomol. Struct. Dyn. 2017. V. 35(6). P. 1189–1199.

20. Fotouhi L., Banafsheh S., Heravi M. Electrochemistry of the interaction of furazolidone and bovine serum albumin // Bioelectrochemistry. 2009. V. 77(1). P. 26–30.

21.  Deeb S.E., Wätzig H., El-Hady D.A., Albishri H.M., De Griend C.S.V., Scriba G.K.E. Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis // Electrophoresis. 2014. V. 35(1). P. 170–189.

22. Wätzig H., Oltmann-Norden I., Steinicke F., Alhazmi H.A., Nachbar M., El-Hady D.A., Albishri H.M., Baumann K., Exner T., Böckler F.M., Deeb S.E. Data quality in drug discovery: the role of analytical performance in ligand binding assays // J. Comput. Aid. Mol. Des. 2015. V. 29(9). P. 847–865.

23. Mais O., Matthias S., Hermann W. Affinity capillary electrophoresis for studying interactions in life sciences // Methods. 2018. V. 146. P. 76–92.

24. Zhang Y.T., Xu M.T., Du M., Zhou F.M. Comparative studies of the interaction between ferulic acid and bovine serum albumin by ACE and surface plasmon resonance // Electrophoresis. 2010. V. 28(11). P. 1839–1845.

25. Mozafari M., El Deeb S., Krull F., Wildgruber R., Weber G., Reiter C.G., Wätzig H. Interaction of albumins and heparinoids investigated by affinity capillary electrophoresis and free flow electrophoresis // Electrophoresis. 2018. V. 39(4). P. 569–580.

26. Deeb S.E., Wätzig H., El-Hady D.A., De Griend C.S.V., Scriba G.K.E. Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis (2013–2015) // Electrophoresis. 2016. V. 37. P. 1591–1608.

27. Zhu M.Q., Wang L.J., Wang Y., Zhou J., Ding J., Li W., Xin Y., Fan S.S., Wang Z., Wang Y. Biointeractions of herbicide atrazine with human serum albumin: UV-Vis, fluorescence and circular dichroism approaches // Int. J. Environ. Res. Public. Health. 2018. V. 15(1). P. 116–131.

28. Michalcová L., Zdenek G. Study on the interactions of sulfonylurea antidiabetic drugs with normal and glycated human serum albumin by capillary electrophoresis-frontal analysis // J. Sep. Sci. 2016. V. 39(18). P. 3631–3637.

29. Qian C., Wang S., Fu H.Q., Turner R.F.B., Li H.H., Chen D.D.Y. Pressure-assisted capillary electrophoresis frontal analysis for faster binding constant determination // Electrophoresis. 2018. V. 39(14). P. 1786–1793.

30. Zhang B., Li Y.X., Gao H.N., Bian J., Bao J.J. Rapid determination of protein binding constant by a pressure-mediated affinity capillary electrophoresis method // Electrophoresis. 2011. V. 32(24). P. 3589–3596.

31.  Liu X.P., Du Y.X. Study on the binding of chiral drug duloxetine hydrochloride to human serum albumin // Eur. J. Med. Chem. 2010. V. 45(9). P. 4043–4049.

32. Bose S., Yang J., Hage D.S. Guidelines in selecting ligand concentrations for the determination of binding constants by affinity capillary electrophoresis // J. Chromatogr. B. 1997. V. 697(1–2). P. 77–88.

33. Liu C.Y., Wei Y.M., Miao Y.Q., Zhang Y.Y. Interactions between isoprenaline hydrochloride and bovine serum albumin (BSA) in capillary zone electrophoresis and affinity capillary electrophoresis // Pharmazie. 2012. V. 67(10). P. 839–843.

34. Wang Y., Zhu M.Q., Liu F., Wu X.W., Pan D.D., Liu J., Fan S.S., Wang Z., Tang J., Na R., Li Q.X., Hua R., Liu S.Z. Comparative studies of interactions between fluorodihydroquinazolin derivatives and human serum albumin with fluorescence spectroscopy // Molecules. 2016. V. 21(10). P. 1373–1386.

35. Makarska-Bialokoz M. Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study // Spectrochim. Acta A. 2017. V. 193. P. 23–32.

36. Li G.X., Liu B.S., Zhang Q.J., Han R.J. Investigation on the effect of fluorescence quenching of bovine serum albumin by cefoxitin sodium using fluorescence spectroscopy and synchronous fluorescence spectroscopy // Lumin. 2015. V. 31(5). P. 1054–1062.

37. Sharma A.S., Anandakumar S., Ilanchelian M. A combined spectroscopic and molecular docking study on site selective binding interaction of to luidine blue O with human and bovine serum albumins // J. Lumin. 2014. V. 151(151). P. 206–218.

38. Asadi M., Asadi Z., Zarei L., Sadi S.B., Amirghofran Z. Affinity to bovine serum albumin and anticancer activity of some new water-soluble metal Schiff base complexes // Spectrochim. Acta A. 2014. V. 133. P. 697–706.

39. Cheng X.X., Fan X.Y., Jiang F.L., Liu Y., Lei K.L. Resonance energy transfer, pH-induced folded states and the molecular interaction of human serum albumin and icariin // Lumin. 2015. V. 30(7). P. 1026–1033.

40. Zhou N., Liang Y.Z., Wang B., Wang P., Chen X., Zeng M.M. Interaction of glycyrrhetinic acid, furosemide and hydrochlorothiazide with bovine serum albumin // Biomed. Chromatogr. 2008. V. 22. P. 223–231.

41.  Tian Z.Y., Zang F.L., Luo W., Zhao Z.H., Wang Y.Q., Xu X.J., Wang C.J. Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA) // J. Photoch. Photobio. B. 2015. V. 142. P. 103–109. 42.      Yang J., Jing Z.H., Jie J.J., Guo P. Fluorescence spectroscopy study on the interaction between Gossypol and bovine serum albumin // J. Mol. Struct. 2009. V. 920(1–3). P. 227–230.