DOI: 10.17586/1023-5086-2020-87-07-18-23
УДК: 621.787
Evaluation of the influence of scattered radiation on image quality in spectral optical coherence tomography systems with electronic scanning of objects
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Гуров И.П., Пименов А.Ю. Оценка влияния рассеянного излучения на качество формирования изображений в системах спектральной оптической когерентной томографии с электронным сканированием объектов // Оптический журнал. 2020. Т. 87. № 7. С. 18–23. http://doi.org/10.17586/1023-5086-2020-87-07-18-23
Gurov I.P., Pimenov A.Yu. Evaluation of the influence of scattered radiation on image quality in spectral optical coherence tomography systems with electronic scanning of objects [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 7. P. 18–23. http://doi.org/10.17586/1023-5086-2020-87-07-18-23
I. P. Gurov and A. Yu. Pimenov, "Evaluation of the influence of scattered radiation on image quality in spectral optical coherence tomography systems with electronic scanning of objects," Journal of Optical Technology . 87(7), 401-404 (2020). https://doi.org/10.1364/JOT.87.000401
A comparative evaluation of the influence of scattered radiation on the quality of generated tomographic images in spectral optical coherence tomography systems with a tunable wavelength is presented. Simulation and experimental results demonstrate that systems with a linear illumination field provide a high operating speed and reduce the noise component of the image by about half compared with the full-field method when a tomographic image of a scattering object is obtained.
optical coherence tomography, source with tunable wavelength, randomly heterogeneous object, microinterferometer
OCIS codes: 110.4500, 170.4500, 110.6955, 030.4280
References:1. R. Vadivambal and D. S. Jayas, Bio-imaging: Principles, Techniques, and Applications (CRC Press, 2016).
2. J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14(6), 1231–1242 (1997).
3. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd ed. (SPIE Press, 2015).
4. B. Povazay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express 14(17), 7661–7669 (2006).
5. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35(20), 3432–3434 (2010).
6. D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
7. I. Gurov, A. Pimenov, and P. Skakov, “Line field swept source optical coherence tomography system with compensation of chromatic aberrations,” Proc. SPIE 11066, 11006612 (2019).
8. D. S. Mehta, T. Anna, and C. Shakher, “Scientific and engineering applications of full-field swept-source optical coherence tomography,” J. Opt. Soc. Korea 13(3), 341–348 (2009).
9. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
10. M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllyla, “Simulation of optical coherence tomography images by Monte-Carlo modeling based on polarization vector approach,” Opt. Express 18(21), 21714–21724 (2010).