DOI: 10.17586/1023-5086-2020-87-07-41-48
УДК: 535.417, 535.317, 778.38
Influence of the structure of the object beam on the quality of images reconstructed using a synthesized Fresnel hologram-projector
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Корешев С.Н., Смородинов Д.С., Старовойтов С.О., Фролова М.А. Влияние структуры объектного пучка на качество изображения, восстанавливаемого с помощью синтезированной голограммы-проектора Френеля // Оптический журнал. 2020. Т. 87. № 7. С. 41–48. http://doi.org/10.17586/1023-5086-2020-87-07-41-48
Koreshev S.N., Smorodinov D.S., Starovoitov S.O., Frolova M.A. Influence of the structure of the object beam on the quality of images reconstructed using a synthesized Fresnel hologram-projector [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 7. P. 41–48. http://doi.org/10.17586/1023-5086-2020-87-07-41-48
The influence of the phase distribution over the object plane on the quality of reconstructed images is investigated in the context of synthesizing hologram-projectors for two-dimensional binary transparencies. The best image quality, estimated by both the number of possible thresholding levels and the depth of field of the reconstructed image, was achieved using the phase distribution corresponding to the irradiation of an object transparency by a homocentric beam convergent at the center of the synthesized hologram aperture. A numerical simulation demonstrates that the enhancement of the reconstructed image quality occurs when the object is illuminated with a convergent beam irrespective of the object sampling period used to synthesize the hologram. Recommendations on the choice of parameters for the synthesis of hologram-projectors are provided herein.
synthesized holograms, telecentric ray travel, converging beam, holograms, photolithography depicting properties of
OCIS codes: 090.0090
References:1. T. V. Ivanova and A. V. Zhadin, “‘Simulated annealing’ algorithm for parametric optimization of the light source in photolithography,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. 17(2), 242–248 (2017).
2. T. V. Ivanova and L. V. Zueva, “Study of methods for discretizing a source when modeling a photolithographic image,” J. Opt. Technol. 79(5), 295–298 (2012) [Opt. Zh. 79(5), 48–52 (2012)].
3. A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnology (Nauka-Fizmatlit, Moscow, 2007).
4. C. Bay, N. Hubner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection,” Opt. Lett. 35(13), 2230–2232 (2010).
5. L. Martinez-Leon, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25(5), 4975–4984 (2017).
6. R. Collier, C. Burckhardt, and L. Lin, Optical Holography (Mir, Moscow, 1973).
7. S. N. Koreshev, O. V. Nikanorov, and D. S. Smorodinov, “Influence of the discreteness of synthetic and digital holograms on their imaging properties,” Komput. Opt. 40(6), 793–801 (2016).
8. S. N. Koreshev, O. V. Nikanorov, and A. D. Gromov, “Method of synthesizing hologram projectors based on breaking down the structure of an object into typical elements, and a software package for implementing it,” J. Opt. Technol. 79(12), 769–774 (2012) [Opt. Zh. 79(12), 30-37 (2012)].
9. G. S. Landsberg, Optics (Fizmatlit, Moscow, 2003).
10. S. N. Koreshev, O. V. Nikanorov, and I. A. Kozulin, “Choosing the synthesis parameters of hologram-projectors for photolithography,” J. Opt. Technol. 75(9), 558–562 (2008) [Opt. Zh. 75(9), 29–34 (2008)].
11. S. N. Koreshev, O. V. Nikanorov, D. S. Smorodinov, and A. D. Gromov, “How the method of representing an object affects the imaging properties of synthesized holograms,” J. Opt. Technol. 82(4), 246–251 (2015) [Opt. Zh. 82(4), 66–73 (2015)].
12. R. R. Bikkenin and M. N. Chesnokov, Theory of Electrical Communication (Akademiya, Moscow, 2010).
13. S. N. Koreshev, D. S. Smorodinov, and M. A. Frolova, “Method for increasing the depth of field of images of flat transparencies reconstructed using synthesized holograms,” J. Opt. Technol. 85(11), 696–702 (2018) [Opt. Zh. 85(11), 50–57 (2018)].
14. G. I. Tsukanova, G. V. Karpova, O. V. Bagdasarova, V. G. Karpov, E. V. Krivopustova, and K. V. Ezhova, Applied Optics, Part Two (SPb GITMO (TU), St. Petersburg, 2003).