ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-07-60-64

УДК: 621.396.029.7

Multichannel fiber-optic amplifier at the wavelength of 1653  nm for lidar remote sensing of atmospheric methane concentrations

For Russian citation (Opticheskii Zhurnal):

Григорьевский В.И., Тезадов Я.А. Многоканальный волоконно-оптический усилитель на длину волны 1653 нм для лидарного контроля содержания метана в атмосфере // Оптический журнал. 2020. Т. 87. № 7. С. 6064. http://doi.org/10.17586/1023-5086-2020-87-07-60-64

 

Grigorevskiĭ V.I., Tezadov Ya.A. Multichannel fiber-optic amplifier at the wavelength of 1653  nm for lidar remote sensing of atmospheric methane concentrations [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 7. P. 6064. http://doi.org/10.17586/1023-5086-2020-87-07-60-64

For citation (Journal of Optical Technology):

V. I. Grigorevskiĭ and Ya. A. Tezadov, "Multichannel fiber-optic amplifier at the wavelength of 1653 nm for lidar remote sensing of atmospheric methane concentrations," Journal of Optical Technology . 87(7), 430-433 (2020).  https://doi.org/10.1364/JOT.87.000430

Abstract:

We have developed and tested a multichannel fiber-optic Raman-effect amplifier with peak output power of the order of 10 W operating at the wavelength of 1653 nm. This amplifier is intended for use in a remote-sensing lidar for atmospheric methane and consists of three power amplifiers, each with an output power of more than 3 W. The output from these amplifiers was combined in a fiber-optic multiplexer and then fed to the lidar transmitter collimator. Our modeling of a single power amplifier indicated that the Raman conversion efficiency is improved when thin-core optical fibers are used; a thin-core optical fiber can be used to decrease both the pump power and the length of the optical fiber. We describe the seed light source spectrum and the multichannel amplifier output spectrum. The output power can be increased beyond 20 W by multiplexing in another four power amplifiers, which would provide sufficient lidar transmitter power to measure gas concentrations from a spacecraft in low-Earth orbit.

Keywords:

lidar, fiber optic amplifier, Raman effect, atmosphere, optical transmitter

OCIS codes: 280.0280, 120.0120

References:

REFERENCES

1. G. A. Akimova, V. I. Grigor’yevskii, V. V. Mataibaev, V. P. Sadovnikov, Yu. P. Syrykh, Ya. A. Tezadov, A. V. Fedenev, and V. V. Khabarov, “Enhancement of the energy potential of a lidar for methane detection with the use of a quasi-continuous radiation source,” J. Commun. Technol. Electron. 60(10), 1058–1061 (2015) [Radiotekh. Elektron. 60(10), 1058–1061 (2015)].

2. C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J.-M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plamann, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).

3. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).

4. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 _m for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).

5. P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).

6. S. Chen, Y. Jung, S. Alam, D. J. Richardson, R. Sidharthan, D. Ho, S. Yoo, and J. M. O. Daniel, “Ultra-short wavelength operation of thuliumdoped fiber amplifiers and lasers,” Opt. Express 27(25), 36699–36707 (2019).

7. T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 _mspectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).

8. Yu. N. Ponomarev and V. A. Kapitanov, “TDLS of methane and its applications to study of methane emissions from natural structures to the atmosphere,” http://www.dls.gpi.ru/rus/conf/TDLS2013/Posters/ Ponomarev.pdf.

9. V. I. Grigorievsky, Ya. A. Tezadov, and A. V. Elbakidze, “Modeling and investigation of high-power optical-fiber transmitters for lidar applications,” J. Russ. Laser Res. 38(4), 344–348 (2017).