DOI: 10.17586/1023-5086-2020-87-07-80-84
УДК: 617.7 535.34
Experimental small low-weight multispectral infrared radiometer for environmental monitoring from space
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Стариченкова В.Д., Перфильев А.С., Тетерина И.В., Тульев В.С., Флейшер А.Г. Экспериментальный маломассогабаритный многоспектральный образец радиометра инфракрасного диапазона для космического мониторинга окружающей среды // Оптический журнал. 2020. Т. 87. № 7. С. 80–84. http://doi.org/10.17586/1023-5086-2020-87-07-80-84
Starichenkova V.D., Perfil’ev A.S., Teterina I.V., Tul’ev V.S., Fleisher A.G. Experimental small low-weight multispectral infrared radiometer for environmental monitoring from space [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 7. P. 80–84. http://doi.org/10.17586/1023-5086-2020-87-07-80-84
V. D. Starichenkova, A. S. Perfil’ev, I. V. Teterina, V. S. Tul’ev, and A. G. Fleisher, "Experimental small low-weight multispectral infrared radiometer for environmental monitoring from space," Journal of Optical Technology. 87(7), 445-448 (2020). https://doi.org/10.1364/JOT.87.000445
This paper reports the parameters of the experimentally tested essential components of a wide-area radiometer (capture range of 150 km at an orbit height of 600 km) operating in the thermal infrared range (8–11 µm) with an enhanced spatial resolution (up to 150 m) and three or more spectral channels, designed for installation on a small spacecraft to survey a wide range of natural resources and remote sensing of the Earth.
small-size, multi-spectral, wide-grip, infrared radio meter, minimization of background interference, multi-channel multi-spectral IR photodetector
OCIS codes: 120.0280, 010.0280, 040.1520, 280.1120
References:1. D. C. Reuter, C. M. Richardson, F. A. Pellerano, J. R. Irons, R. G. Allen, M. Anderson, M. D. Jhabvala, A. W. Lunsford, M. Montanaro, R. L. Smith, Z. Tesfaye, and K. J. Thome, “The thermal infrared sensor (TIRS) on Landsat 8: design overview and pre-launch characterization,” Remote Sens. 7(1), 1135–1153 (2015).
2. S. Smuk, Yu. Kochanov, M. Petroshenko, and D. Solomitskii, “IRnova quantum-well-based infrared sensors for the long wavelength range,” Kompon. Tekhnol. (1), 152–157 (2014).
3. S. V. Riabzev, A. M. Veprik, H. S. Vilenchik, N. Pundak, and E. Castiel, “Vibration-free stirling cryogenic cooler for high definition microscopy,” Cryogenics 49(12), 707–713 (2009).
4. A. I. Vangonen, Yu. M. Golubovski˘ı, V. D. Starichenkova, O. K. Taganov, and M. N. Kovalenko, “Thermal emitters for illumination systems and for calibration of infrared spectral and optoelectronic equipment,” J. Opt. Technol. 86(1), 48–53 (2019) [Opt. Zh. 86(1), 60–67 (2019)].